\left\{ \begin{array} { l } { 120 x + 100 y = 36000 } \\ { ( 138 - 120 ) x + ( 120 - 100 ) y = 6000 } \end{array} \right.
Solve for x, y
x=200
y=120
Graph
Share
Copied to clipboard
120x+100y=36000,18x+20y=6000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
120x+100y=36000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
120x=-100y+36000
Subtract 100y from both sides of the equation.
x=\frac{1}{120}\left(-100y+36000\right)
Divide both sides by 120.
x=-\frac{5}{6}y+300
Multiply \frac{1}{120} times -100y+36000.
18\left(-\frac{5}{6}y+300\right)+20y=6000
Substitute -\frac{5y}{6}+300 for x in the other equation, 18x+20y=6000.
-15y+5400+20y=6000
Multiply 18 times -\frac{5y}{6}+300.
5y+5400=6000
Add -15y to 20y.
5y=600
Subtract 5400 from both sides of the equation.
y=120
Divide both sides by 5.
x=-\frac{5}{6}\times 120+300
Substitute 120 for y in x=-\frac{5}{6}y+300. Because the resulting equation contains only one variable, you can solve for x directly.
x=-100+300
Multiply -\frac{5}{6} times 120.
x=200
Add 300 to -100.
x=200,y=120
The system is now solved.
120x+100y=36000,18x+20y=6000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}120&100\\18&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}36000\\6000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}120&100\\18&20\end{matrix}\right))\left(\begin{matrix}120&100\\18&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}120&100\\18&20\end{matrix}\right))\left(\begin{matrix}36000\\6000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}120&100\\18&20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}120&100\\18&20\end{matrix}\right))\left(\begin{matrix}36000\\6000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}120&100\\18&20\end{matrix}\right))\left(\begin{matrix}36000\\6000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{120\times 20-100\times 18}&-\frac{100}{120\times 20-100\times 18}\\-\frac{18}{120\times 20-100\times 18}&\frac{120}{120\times 20-100\times 18}\end{matrix}\right)\left(\begin{matrix}36000\\6000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}&-\frac{1}{6}\\-\frac{3}{100}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}36000\\6000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}\times 36000-\frac{1}{6}\times 6000\\-\frac{3}{100}\times 36000+\frac{1}{5}\times 6000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\120\end{matrix}\right)
Do the arithmetic.
x=200,y=120
Extract the matrix elements x and y.
120x+100y=36000,18x+20y=6000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
18\times 120x+18\times 100y=18\times 36000,120\times 18x+120\times 20y=120\times 6000
To make 120x and 18x equal, multiply all terms on each side of the first equation by 18 and all terms on each side of the second by 120.
2160x+1800y=648000,2160x+2400y=720000
Simplify.
2160x-2160x+1800y-2400y=648000-720000
Subtract 2160x+2400y=720000 from 2160x+1800y=648000 by subtracting like terms on each side of the equal sign.
1800y-2400y=648000-720000
Add 2160x to -2160x. Terms 2160x and -2160x cancel out, leaving an equation with only one variable that can be solved.
-600y=648000-720000
Add 1800y to -2400y.
-600y=-72000
Add 648000 to -720000.
y=120
Divide both sides by -600.
18x+20\times 120=6000
Substitute 120 for y in 18x+20y=6000. Because the resulting equation contains only one variable, you can solve for x directly.
18x+2400=6000
Multiply 20 times 120.
18x=3600
Subtract 2400 from both sides of the equation.
x=200
Divide both sides by 18.
x=200,y=120
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}