Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x-4y=20,5x+2y=23
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
12x-4y=20
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
12x=4y+20
Add 4y to both sides of the equation.
x=\frac{1}{12}\left(4y+20\right)
Divide both sides by 12.
x=\frac{1}{3}y+\frac{5}{3}
Multiply \frac{1}{12} times 20+4y.
5\left(\frac{1}{3}y+\frac{5}{3}\right)+2y=23
Substitute \frac{5+y}{3} for x in the other equation, 5x+2y=23.
\frac{5}{3}y+\frac{25}{3}+2y=23
Multiply 5 times \frac{5+y}{3}.
\frac{11}{3}y+\frac{25}{3}=23
Add \frac{5y}{3} to 2y.
\frac{11}{3}y=\frac{44}{3}
Subtract \frac{25}{3} from both sides of the equation.
y=4
Divide both sides of the equation by \frac{11}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{1}{3}\times 4+\frac{5}{3}
Substitute 4 for y in x=\frac{1}{3}y+\frac{5}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{4+5}{3}
Multiply \frac{1}{3} times 4.
x=3
Add \frac{5}{3} to \frac{4}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=3,y=4
The system is now solved.
12x-4y=20,5x+2y=23
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}12&-4\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\23\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}12&-4\\5&2\end{matrix}\right))\left(\begin{matrix}12&-4\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&-4\\5&2\end{matrix}\right))\left(\begin{matrix}20\\23\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}12&-4\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&-4\\5&2\end{matrix}\right))\left(\begin{matrix}20\\23\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&-4\\5&2\end{matrix}\right))\left(\begin{matrix}20\\23\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{12\times 2-\left(-4\times 5\right)}&-\frac{-4}{12\times 2-\left(-4\times 5\right)}\\-\frac{5}{12\times 2-\left(-4\times 5\right)}&\frac{12}{12\times 2-\left(-4\times 5\right)}\end{matrix}\right)\left(\begin{matrix}20\\23\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}&\frac{1}{11}\\-\frac{5}{44}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}20\\23\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}\times 20+\frac{1}{11}\times 23\\-\frac{5}{44}\times 20+\frac{3}{11}\times 23\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Do the arithmetic.
x=3,y=4
Extract the matrix elements x and y.
12x-4y=20,5x+2y=23
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 12x+5\left(-4\right)y=5\times 20,12\times 5x+12\times 2y=12\times 23
To make 12x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 12.
60x-20y=100,60x+24y=276
Simplify.
60x-60x-20y-24y=100-276
Subtract 60x+24y=276 from 60x-20y=100 by subtracting like terms on each side of the equal sign.
-20y-24y=100-276
Add 60x to -60x. Terms 60x and -60x cancel out, leaving an equation with only one variable that can be solved.
-44y=100-276
Add -20y to -24y.
-44y=-176
Add 100 to -276.
y=4
Divide both sides by -44.
5x+2\times 4=23
Substitute 4 for y in 5x+2y=23. Because the resulting equation contains only one variable, you can solve for x directly.
5x+8=23
Multiply 2 times 4.
5x=15
Subtract 8 from both sides of the equation.
x=3
Divide both sides by 5.
x=3,y=4
The system is now solved.