\left\{ \begin{array} { l } { 11 a _ { 1 } + 8 a _ { 2 } = - 8 } \\ { 8 a _ { 1 } + 11 a _ { 2 } = - \frac { 26 } { 5 } } \end{array} \right.
Solve for a_1, a_2
a_{1}=-\frac{232}{285}\approx -0.814035088
a_{2}=\frac{34}{285}\approx 0.119298246
Share
Copied to clipboard
11a_{1}+8a_{2}=-8,8a_{1}+11a_{2}=-\frac{26}{5}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
11a_{1}+8a_{2}=-8
Choose one of the equations and solve it for a_{1} by isolating a_{1} on the left hand side of the equal sign.
11a_{1}=-8a_{2}-8
Subtract 8a_{2} from both sides of the equation.
a_{1}=\frac{1}{11}\left(-8a_{2}-8\right)
Divide both sides by 11.
a_{1}=-\frac{8}{11}a_{2}-\frac{8}{11}
Multiply \frac{1}{11} times -8a_{2}-8.
8\left(-\frac{8}{11}a_{2}-\frac{8}{11}\right)+11a_{2}=-\frac{26}{5}
Substitute \frac{-8a_{2}-8}{11} for a_{1} in the other equation, 8a_{1}+11a_{2}=-\frac{26}{5}.
-\frac{64}{11}a_{2}-\frac{64}{11}+11a_{2}=-\frac{26}{5}
Multiply 8 times \frac{-8a_{2}-8}{11}.
\frac{57}{11}a_{2}-\frac{64}{11}=-\frac{26}{5}
Add -\frac{64a_{2}}{11} to 11a_{2}.
\frac{57}{11}a_{2}=\frac{34}{55}
Add \frac{64}{11} to both sides of the equation.
a_{2}=\frac{34}{285}
Divide both sides of the equation by \frac{57}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
a_{1}=-\frac{8}{11}\times \frac{34}{285}-\frac{8}{11}
Substitute \frac{34}{285} for a_{2} in a_{1}=-\frac{8}{11}a_{2}-\frac{8}{11}. Because the resulting equation contains only one variable, you can solve for a_{1} directly.
a_{1}=-\frac{272}{3135}-\frac{8}{11}
Multiply -\frac{8}{11} times \frac{34}{285} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a_{1}=-\frac{232}{285}
Add -\frac{8}{11} to -\frac{272}{3135} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a_{1}=-\frac{232}{285},a_{2}=\frac{34}{285}
The system is now solved.
11a_{1}+8a_{2}=-8,8a_{1}+11a_{2}=-\frac{26}{5}
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}11&8\\8&11\end{matrix}\right)\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}11&8\\8&11\end{matrix}\right))\left(\begin{matrix}11&8\\8&11\end{matrix}\right)\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}11&8\\8&11\end{matrix}\right))\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}11&8\\8&11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}11&8\\8&11\end{matrix}\right))\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}11&8\\8&11\end{matrix}\right))\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{11}{11\times 11-8\times 8}&-\frac{8}{11\times 11-8\times 8}\\-\frac{8}{11\times 11-8\times 8}&\frac{11}{11\times 11-8\times 8}\end{matrix}\right)\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{11}{57}&-\frac{8}{57}\\-\frac{8}{57}&\frac{11}{57}\end{matrix}\right)\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{11}{57}\left(-8\right)-\frac{8}{57}\left(-\frac{26}{5}\right)\\-\frac{8}{57}\left(-8\right)+\frac{11}{57}\left(-\frac{26}{5}\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{232}{285}\\\frac{34}{285}\end{matrix}\right)
Do the arithmetic.
a_{1}=-\frac{232}{285},a_{2}=\frac{34}{285}
Extract the matrix elements a_{1} and a_{2}.
11a_{1}+8a_{2}=-8,8a_{1}+11a_{2}=-\frac{26}{5}
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8\times 11a_{1}+8\times 8a_{2}=8\left(-8\right),11\times 8a_{1}+11\times 11a_{2}=11\left(-\frac{26}{5}\right)
To make 11a_{1} and 8a_{1} equal, multiply all terms on each side of the first equation by 8 and all terms on each side of the second by 11.
88a_{1}+64a_{2}=-64,88a_{1}+121a_{2}=-\frac{286}{5}
Simplify.
88a_{1}-88a_{1}+64a_{2}-121a_{2}=-64+\frac{286}{5}
Subtract 88a_{1}+121a_{2}=-\frac{286}{5} from 88a_{1}+64a_{2}=-64 by subtracting like terms on each side of the equal sign.
64a_{2}-121a_{2}=-64+\frac{286}{5}
Add 88a_{1} to -88a_{1}. Terms 88a_{1} and -88a_{1} cancel out, leaving an equation with only one variable that can be solved.
-57a_{2}=-64+\frac{286}{5}
Add 64a_{2} to -121a_{2}.
-57a_{2}=-\frac{34}{5}
Add -64 to \frac{286}{5}.
a_{2}=\frac{34}{285}
Divide both sides by -57.
8a_{1}+11\times \frac{34}{285}=-\frac{26}{5}
Substitute \frac{34}{285} for a_{2} in 8a_{1}+11a_{2}=-\frac{26}{5}. Because the resulting equation contains only one variable, you can solve for a_{1} directly.
8a_{1}+\frac{374}{285}=-\frac{26}{5}
Multiply 11 times \frac{34}{285}.
8a_{1}=-\frac{1856}{285}
Subtract \frac{374}{285} from both sides of the equation.
a_{1}=-\frac{232}{285}
Divide both sides by 8.
a_{1}=-\frac{232}{285},a_{2}=\frac{34}{285}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}