\left\{ \begin{array} { l } { 10 x + 3 y = 3360 } \\ { x + y = 420 } \end{array} \right.
Solve for x, y
x=300
y=120
Graph
Share
Copied to clipboard
10x+3y=3360,x+y=420
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+3y=3360
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-3y+3360
Subtract 3y from both sides of the equation.
x=\frac{1}{10}\left(-3y+3360\right)
Divide both sides by 10.
x=-\frac{3}{10}y+336
Multiply \frac{1}{10} times -3y+3360.
-\frac{3}{10}y+336+y=420
Substitute -\frac{3y}{10}+336 for x in the other equation, x+y=420.
\frac{7}{10}y+336=420
Add -\frac{3y}{10} to y.
\frac{7}{10}y=84
Subtract 336 from both sides of the equation.
y=120
Divide both sides of the equation by \frac{7}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{10}\times 120+336
Substitute 120 for y in x=-\frac{3}{10}y+336. Because the resulting equation contains only one variable, you can solve for x directly.
x=-36+336
Multiply -\frac{3}{10} times 120.
x=300
Add 336 to -36.
x=300,y=120
The system is now solved.
10x+3y=3360,x+y=420
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3360\\420\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&3\\1&1\end{matrix}\right))\left(\begin{matrix}10&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&3\\1&1\end{matrix}\right))\left(\begin{matrix}3360\\420\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&3\\1&1\end{matrix}\right))\left(\begin{matrix}3360\\420\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&3\\1&1\end{matrix}\right))\left(\begin{matrix}3360\\420\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-3}&-\frac{3}{10-3}\\-\frac{1}{10-3}&\frac{10}{10-3}\end{matrix}\right)\left(\begin{matrix}3360\\420\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{3}{7}\\-\frac{1}{7}&\frac{10}{7}\end{matrix}\right)\left(\begin{matrix}3360\\420\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 3360-\frac{3}{7}\times 420\\-\frac{1}{7}\times 3360+\frac{10}{7}\times 420\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\120\end{matrix}\right)
Do the arithmetic.
x=300,y=120
Extract the matrix elements x and y.
10x+3y=3360,x+y=420
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+3y=3360,10x+10y=10\times 420
To make 10x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 10.
10x+3y=3360,10x+10y=4200
Simplify.
10x-10x+3y-10y=3360-4200
Subtract 10x+10y=4200 from 10x+3y=3360 by subtracting like terms on each side of the equal sign.
3y-10y=3360-4200
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
-7y=3360-4200
Add 3y to -10y.
-7y=-840
Add 3360 to -4200.
y=120
Divide both sides by -7.
x+120=420
Substitute 120 for y in x+y=420. Because the resulting equation contains only one variable, you can solve for x directly.
x=300
Subtract 120 from both sides of the equation.
x=300,y=120
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}