Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x+25y=600,15x+30y=750
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+25y=600
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-25y+600
Subtract 25y from both sides of the equation.
x=\frac{1}{10}\left(-25y+600\right)
Divide both sides by 10.
x=-\frac{5}{2}y+60
Multiply \frac{1}{10} times -25y+600.
15\left(-\frac{5}{2}y+60\right)+30y=750
Substitute -\frac{5y}{2}+60 for x in the other equation, 15x+30y=750.
-\frac{75}{2}y+900+30y=750
Multiply 15 times -\frac{5y}{2}+60.
-\frac{15}{2}y+900=750
Add -\frac{75y}{2} to 30y.
-\frac{15}{2}y=-150
Subtract 900 from both sides of the equation.
y=20
Divide both sides of the equation by -\frac{15}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{2}\times 20+60
Substitute 20 for y in x=-\frac{5}{2}y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=-50+60
Multiply -\frac{5}{2} times 20.
x=10
Add 60 to -50.
x=10,y=20
The system is now solved.
10x+25y=600,15x+30y=750
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&25\\15&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}600\\750\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&25\\15&30\end{matrix}\right))\left(\begin{matrix}10&25\\15&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&25\\15&30\end{matrix}\right))\left(\begin{matrix}600\\750\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&25\\15&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&25\\15&30\end{matrix}\right))\left(\begin{matrix}600\\750\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&25\\15&30\end{matrix}\right))\left(\begin{matrix}600\\750\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{10\times 30-25\times 15}&-\frac{25}{10\times 30-25\times 15}\\-\frac{15}{10\times 30-25\times 15}&\frac{10}{10\times 30-25\times 15}\end{matrix}\right)\left(\begin{matrix}600\\750\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{1}{3}\\\frac{1}{5}&-\frac{2}{15}\end{matrix}\right)\left(\begin{matrix}600\\750\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 600+\frac{1}{3}\times 750\\\frac{1}{5}\times 600-\frac{2}{15}\times 750\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
Do the arithmetic.
x=10,y=20
Extract the matrix elements x and y.
10x+25y=600,15x+30y=750
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
15\times 10x+15\times 25y=15\times 600,10\times 15x+10\times 30y=10\times 750
To make 10x and 15x equal, multiply all terms on each side of the first equation by 15 and all terms on each side of the second by 10.
150x+375y=9000,150x+300y=7500
Simplify.
150x-150x+375y-300y=9000-7500
Subtract 150x+300y=7500 from 150x+375y=9000 by subtracting like terms on each side of the equal sign.
375y-300y=9000-7500
Add 150x to -150x. Terms 150x and -150x cancel out, leaving an equation with only one variable that can be solved.
75y=9000-7500
Add 375y to -300y.
75y=1500
Add 9000 to -7500.
y=20
Divide both sides by 75.
15x+30\times 20=750
Substitute 20 for y in 15x+30y=750. Because the resulting equation contains only one variable, you can solve for x directly.
15x+600=750
Multiply 30 times 20.
15x=150
Subtract 600 from both sides of the equation.
x=10
Divide both sides by 15.
x=10,y=20
The system is now solved.