\left\{ \begin{array} { l } { 10 x + 10 y = 1646 } \\ { 30 x + 12 y = 3894 } \end{array} \right.
Solve for x, y
x = \frac{533}{5} = 106\frac{3}{5} = 106.6
y=58
Graph
Share
Copied to clipboard
10x+10y=1646,30x+12y=3894
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+10y=1646
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-10y+1646
Subtract 10y from both sides of the equation.
x=\frac{1}{10}\left(-10y+1646\right)
Divide both sides by 10.
x=-y+\frac{823}{5}
Multiply \frac{1}{10} times -10y+1646.
30\left(-y+\frac{823}{5}\right)+12y=3894
Substitute -y+\frac{823}{5} for x in the other equation, 30x+12y=3894.
-30y+4938+12y=3894
Multiply 30 times -y+\frac{823}{5}.
-18y+4938=3894
Add -30y to 12y.
-18y=-1044
Subtract 4938 from both sides of the equation.
y=58
Divide both sides by -18.
x=-58+\frac{823}{5}
Substitute 58 for y in x=-y+\frac{823}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{533}{5}
Add \frac{823}{5} to -58.
x=\frac{533}{5},y=58
The system is now solved.
10x+10y=1646,30x+12y=3894
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&10\\30&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1646\\3894\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&10\\30&12\end{matrix}\right))\left(\begin{matrix}10&10\\30&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&10\\30&12\end{matrix}\right))\left(\begin{matrix}1646\\3894\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&10\\30&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&10\\30&12\end{matrix}\right))\left(\begin{matrix}1646\\3894\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&10\\30&12\end{matrix}\right))\left(\begin{matrix}1646\\3894\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{10\times 12-10\times 30}&-\frac{10}{10\times 12-10\times 30}\\-\frac{30}{10\times 12-10\times 30}&\frac{10}{10\times 12-10\times 30}\end{matrix}\right)\left(\begin{matrix}1646\\3894\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}&\frac{1}{18}\\\frac{1}{6}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}1646\\3894\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}\times 1646+\frac{1}{18}\times 3894\\\frac{1}{6}\times 1646-\frac{1}{18}\times 3894\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{533}{5}\\58\end{matrix}\right)
Do the arithmetic.
x=\frac{533}{5},y=58
Extract the matrix elements x and y.
10x+10y=1646,30x+12y=3894
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
30\times 10x+30\times 10y=30\times 1646,10\times 30x+10\times 12y=10\times 3894
To make 10x and 30x equal, multiply all terms on each side of the first equation by 30 and all terms on each side of the second by 10.
300x+300y=49380,300x+120y=38940
Simplify.
300x-300x+300y-120y=49380-38940
Subtract 300x+120y=38940 from 300x+300y=49380 by subtracting like terms on each side of the equal sign.
300y-120y=49380-38940
Add 300x to -300x. Terms 300x and -300x cancel out, leaving an equation with only one variable that can be solved.
180y=49380-38940
Add 300y to -120y.
180y=10440
Add 49380 to -38940.
y=58
Divide both sides by 180.
30x+12\times 58=3894
Substitute 58 for y in 30x+12y=3894. Because the resulting equation contains only one variable, you can solve for x directly.
30x+696=3894
Multiply 12 times 58.
30x=3198
Subtract 696 from both sides of the equation.
x=\frac{533}{5}
Divide both sides by 30.
x=\frac{533}{5},y=58
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}