\left\{ \begin{array} { l } { 10 = x + y } \\ { 18 = x - 1 } \end{array} \right.
Solve for x, y
x=19
y=-9
Graph
Share
Copied to clipboard
x-1=18
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x=18+1
Add 1 to both sides.
x=19
Add 18 and 1 to get 19.
10=19+y
Consider the first equation. Insert the known values of variables into the equation.
19+y=10
Swap sides so that all variable terms are on the left hand side.
y=10-19
Subtract 19 from both sides.
y=-9
Subtract 19 from 10 to get -9.
x=19 y=-9
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}