\left\{ \begin{array} { l } { 1.5 x - 35 y = - 5 } \\ { - 1.2 y + 2.5 y = 1 } \end{array} \right.
Solve for x, y
x = \frac{190}{13} = 14\frac{8}{13} \approx 14.615384615
y=\frac{10}{13}\approx 0.769230769
Graph
Share
Copied to clipboard
1.3y=1
Consider the second equation. Combine -1.2y and 2.5y to get 1.3y.
y=\frac{1}{1.3}
Divide both sides by 1.3.
y=\frac{10}{13}
Expand \frac{1}{1.3} by multiplying both numerator and the denominator by 10.
1.5x-35\times \frac{10}{13}=-5
Consider the first equation. Insert the known values of variables into the equation.
1.5x-\frac{350}{13}=-5
Multiply -35 and \frac{10}{13} to get -\frac{350}{13}.
1.5x=-5+\frac{350}{13}
Add \frac{350}{13} to both sides.
1.5x=\frac{285}{13}
Add -5 and \frac{350}{13} to get \frac{285}{13}.
x=\frac{\frac{285}{13}}{1.5}
Divide both sides by 1.5.
x=\frac{285}{13\times 1.5}
Express \frac{\frac{285}{13}}{1.5} as a single fraction.
x=\frac{285}{19.5}
Multiply 13 and 1.5 to get 19.5.
x=\frac{2850}{195}
Expand \frac{285}{19.5} by multiplying both numerator and the denominator by 10.
x=\frac{190}{13}
Reduce the fraction \frac{2850}{195} to lowest terms by extracting and canceling out 15.
x=\frac{190}{13} y=\frac{10}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}