Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x+20y=\frac{14000}{1.4}
Consider the first equation. Divide both sides by 1.4.
10x+20y=\frac{140000}{14}
Expand \frac{14000}{1.4} by multiplying both numerator and the denominator by 10.
10x+20y=10000
Divide 140000 by 14 to get 10000.
120x+110y=\frac{89100}{1.1}
Consider the second equation. Divide both sides by 1.1.
120x+110y=\frac{891000}{11}
Expand \frac{89100}{1.1} by multiplying both numerator and the denominator by 10.
120x+110y=81000
Divide 891000 by 11 to get 81000.
10x+20y=10000,120x+110y=81000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+20y=10000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-20y+10000
Subtract 20y from both sides of the equation.
x=\frac{1}{10}\left(-20y+10000\right)
Divide both sides by 10.
x=-2y+1000
Multiply \frac{1}{10} times -20y+10000.
120\left(-2y+1000\right)+110y=81000
Substitute -2y+1000 for x in the other equation, 120x+110y=81000.
-240y+120000+110y=81000
Multiply 120 times -2y+1000.
-130y+120000=81000
Add -240y to 110y.
-130y=-39000
Subtract 120000 from both sides of the equation.
y=300
Divide both sides by -130.
x=-2\times 300+1000
Substitute 300 for y in x=-2y+1000. Because the resulting equation contains only one variable, you can solve for x directly.
x=-600+1000
Multiply -2 times 300.
x=400
Add 1000 to -600.
x=400,y=300
The system is now solved.
10x+20y=\frac{14000}{1.4}
Consider the first equation. Divide both sides by 1.4.
10x+20y=\frac{140000}{14}
Expand \frac{14000}{1.4} by multiplying both numerator and the denominator by 10.
10x+20y=10000
Divide 140000 by 14 to get 10000.
120x+110y=\frac{89100}{1.1}
Consider the second equation. Divide both sides by 1.1.
120x+110y=\frac{891000}{11}
Expand \frac{89100}{1.1} by multiplying both numerator and the denominator by 10.
120x+110y=81000
Divide 891000 by 11 to get 81000.
10x+20y=10000,120x+110y=81000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&20\\120&110\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10000\\81000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&20\\120&110\end{matrix}\right))\left(\begin{matrix}10&20\\120&110\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\120&110\end{matrix}\right))\left(\begin{matrix}10000\\81000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&20\\120&110\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\120&110\end{matrix}\right))\left(\begin{matrix}10000\\81000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\120&110\end{matrix}\right))\left(\begin{matrix}10000\\81000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{110}{10\times 110-20\times 120}&-\frac{20}{10\times 110-20\times 120}\\-\frac{120}{10\times 110-20\times 120}&\frac{10}{10\times 110-20\times 120}\end{matrix}\right)\left(\begin{matrix}10000\\81000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{130}&\frac{1}{65}\\\frac{6}{65}&-\frac{1}{130}\end{matrix}\right)\left(\begin{matrix}10000\\81000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{130}\times 10000+\frac{1}{65}\times 81000\\\frac{6}{65}\times 10000-\frac{1}{130}\times 81000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\300\end{matrix}\right)
Do the arithmetic.
x=400,y=300
Extract the matrix elements x and y.
10x+20y=\frac{14000}{1.4}
Consider the first equation. Divide both sides by 1.4.
10x+20y=\frac{140000}{14}
Expand \frac{14000}{1.4} by multiplying both numerator and the denominator by 10.
10x+20y=10000
Divide 140000 by 14 to get 10000.
120x+110y=\frac{89100}{1.1}
Consider the second equation. Divide both sides by 1.1.
120x+110y=\frac{891000}{11}
Expand \frac{89100}{1.1} by multiplying both numerator and the denominator by 10.
120x+110y=81000
Divide 891000 by 11 to get 81000.
10x+20y=10000,120x+110y=81000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
120\times 10x+120\times 20y=120\times 10000,10\times 120x+10\times 110y=10\times 81000
To make 10x and 120x equal, multiply all terms on each side of the first equation by 120 and all terms on each side of the second by 10.
1200x+2400y=1200000,1200x+1100y=810000
Simplify.
1200x-1200x+2400y-1100y=1200000-810000
Subtract 1200x+1100y=810000 from 1200x+2400y=1200000 by subtracting like terms on each side of the equal sign.
2400y-1100y=1200000-810000
Add 1200x to -1200x. Terms 1200x and -1200x cancel out, leaving an equation with only one variable that can be solved.
1300y=1200000-810000
Add 2400y to -1100y.
1300y=390000
Add 1200000 to -810000.
y=300
Divide both sides by 1300.
120x+110\times 300=81000
Substitute 300 for y in 120x+110y=81000. Because the resulting equation contains only one variable, you can solve for x directly.
120x+33000=81000
Multiply 110 times 300.
120x=48000
Subtract 33000 from both sides of the equation.
x=400
Divide both sides by 120.
x=400,y=300
The system is now solved.