Skip to main content
Solve for x, y
Tick mark Image
Graph

Share

1.3x=\frac{26}{25}\sqrt{5}+3.3y
Consider the first equation. Multiply 1.3 and \frac{4}{5} to get \frac{26}{25}.
1.3x-3.3y=\frac{26}{25}\sqrt{5}
Subtract 3.3y from both sides.
1.3x^{2}=1.3\times \left(\frac{4}{5}\right)^{2}\left(\sqrt{5}\right)^{2}+3.3y^{2}
Consider the second equation. Expand \left(\frac{4}{5}\sqrt{5}\right)^{2}.
1.3x^{2}=1.3\times \frac{16}{25}\left(\sqrt{5}\right)^{2}+3.3y^{2}
Calculate \frac{4}{5} to the power of 2 and get \frac{16}{25}.
1.3x^{2}=1.3\times \frac{16}{25}\times 5+3.3y^{2}
The square of \sqrt{5} is 5.
1.3x^{2}=1.3\times \frac{16}{5}+3.3y^{2}
Multiply \frac{16}{25} and 5 to get \frac{16}{5}.
1.3x^{2}=\frac{104}{25}+3.3y^{2}
Multiply 1.3 and \frac{16}{5} to get \frac{104}{25}.
1.3x^{2}-3.3y^{2}=\frac{104}{25}
Subtract 3.3y^{2} from both sides.
1.3x-3.3y=\frac{26\sqrt{5}}{25},-3.3y^{2}+1.3x^{2}=\frac{104}{25}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
1.3x-3.3y=\frac{26\sqrt{5}}{25}
Solve 1.3x-3.3y=\frac{26\sqrt{5}}{25} for x by isolating x on the left hand side of the equal sign.
1.3x=3.3y+\frac{26\sqrt{5}}{25}
Subtract -3.3y from both sides of the equation.
x=\frac{33}{13}y+\frac{4\sqrt{5}}{5}
Divide both sides of the equation by 1.3, which is the same as multiplying both sides by the reciprocal of the fraction.
-3.3y^{2}+1.3\left(\frac{33}{13}y+\frac{4\sqrt{5}}{5}\right)^{2}=\frac{104}{25}
Substitute \frac{33}{13}y+\frac{4\sqrt{5}}{5} for x in the other equation, -3.3y^{2}+1.3x^{2}=\frac{104}{25}.
-3.3y^{2}+1.3\left(\frac{1089}{169}y^{2}+\frac{66}{13}\times \frac{4\sqrt{5}}{5}y+\left(\frac{4\sqrt{5}}{5}\right)^{2}\right)=\frac{104}{25}
Square \frac{33}{13}y+\frac{4\sqrt{5}}{5}.
-3.3y^{2}+\frac{1089}{130}y^{2}+\frac{33\times \frac{4\sqrt{5}}{5}}{5}y+\frac{13\times \left(\frac{4\sqrt{5}}{5}\right)^{2}}{10}=\frac{104}{25}
Multiply 1.3 times \frac{1089}{169}y^{2}+\frac{66}{13}\times \frac{4\sqrt{5}}{5}y+\left(\frac{4\sqrt{5}}{5}\right)^{2}.
\frac{66}{13}y^{2}+\frac{33\times \frac{4\sqrt{5}}{5}}{5}y+\frac{13\times \left(\frac{4\sqrt{5}}{5}\right)^{2}}{10}=\frac{104}{25}
Add -3.3y^{2} to \frac{1089}{130}y^{2}.
\frac{66}{13}y^{2}+\frac{33\times \frac{4\sqrt{5}}{5}}{5}y+\frac{13\times \left(\frac{4\sqrt{5}}{5}\right)^{2}}{10}-\frac{104}{25}=0
Subtract \frac{104}{25} from both sides of the equation.
y=\frac{-\frac{33\times \frac{4\sqrt{5}}{5}}{5}±\sqrt{\left(\frac{33\times \frac{4\sqrt{5}}{5}}{5}\right)^{2}}}{2\times \frac{66}{13}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3.3+1.3\times \frac{33}{13}^{2} for a, 1.3\times 2\times \frac{33}{13}\times \frac{4\sqrt{5}}{5} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{33\times \frac{4\sqrt{5}}{5}}{5}±\frac{132\sqrt{5}}{25}}{2\times \frac{66}{13}}
The square root of b^{2} is |b|. Substitute 1.3\times 2\times \frac{33}{13}\times \frac{4\sqrt{5}}{5} for b.
y=\frac{-\frac{132\sqrt{5}}{25}±\frac{132\sqrt{5}}{25}}{\frac{132}{13}}
Multiply 2 times -3.3+1.3\times \frac{33}{13}^{2}.
y=\frac{0}{\frac{132}{13}}
Now solve the equation y=\frac{-\frac{132\sqrt{5}}{25}±\frac{132\sqrt{5}}{25}}{\frac{132}{13}} when ± is plus. Add -\frac{132\sqrt{5}}{25} to \frac{132\sqrt{5}}{25}.
y=0
Divide 0 by \frac{132}{13} by multiplying 0 by the reciprocal of \frac{132}{13}.
y=-\frac{\frac{264\sqrt{5}}{25}}{\frac{132}{13}}
Now solve the equation y=\frac{-\frac{132\sqrt{5}}{25}±\frac{132\sqrt{5}}{25}}{\frac{132}{13}} when ± is minus. Subtract \frac{132\sqrt{5}}{25} from -\frac{132\sqrt{5}}{25}.
y=-\frac{26\sqrt{5}}{25}
Divide -\frac{264\sqrt{5}}{25} by \frac{132}{13} by multiplying -\frac{264\sqrt{5}}{25} by the reciprocal of \frac{132}{13}.
x=\frac{4\sqrt{5}}{5}
There are two solutions for y: 0 and -\frac{26\sqrt{5}}{25}. Substitute 0 for y in the equation x=\frac{33}{13}y+\frac{4\sqrt{5}}{5} to find the corresponding solution for x that satisfies both equations.
x=\frac{33}{13}\left(-\frac{26\sqrt{5}}{25}\right)+\frac{4\sqrt{5}}{5}
Now substitute -\frac{26\sqrt{5}}{25} for y in the equation x=\frac{33}{13}y+\frac{4\sqrt{5}}{5} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{33\left(-\frac{26\sqrt{5}}{25}\right)}{13}+\frac{4\sqrt{5}}{5}
Multiply \frac{33}{13} times -\frac{26\sqrt{5}}{25}.
x=\frac{4\sqrt{5}}{5},y=0\text{ or }x=\frac{33\left(-\frac{26\sqrt{5}}{25}\right)}{13}+\frac{4\sqrt{5}}{5},y=-\frac{26\sqrt{5}}{25}
The system is now solved.