\left\{ \begin{array} { l } { 1 = a + b + c } \\ { 5 = 4 a + 2 b + c } \\ { 12 = 9 a + 3 b + c } \end{array} \right.
Solve for a, b, c
a = \frac{3}{2} = 1\frac{1}{2} = 1.5
b=-\frac{1}{2}=-0.5
c=0
Share
Copied to clipboard
a=-b+1-c
Solve 1=a+b+c for a.
5=4\left(-b+1-c\right)+2b+c 12=9\left(-b+1-c\right)+3b+c
Substitute -b+1-c for a in the second and third equation.
b=-\frac{1}{2}-\frac{3}{2}c c=-\frac{3}{8}-\frac{3}{4}b
Solve these equations for b and c respectively.
c=-\frac{3}{8}-\frac{3}{4}\left(-\frac{1}{2}-\frac{3}{2}c\right)
Substitute -\frac{1}{2}-\frac{3}{2}c for b in the equation c=-\frac{3}{8}-\frac{3}{4}b.
c=0
Solve c=-\frac{3}{8}-\frac{3}{4}\left(-\frac{1}{2}-\frac{3}{2}c\right) for c.
b=-\frac{1}{2}-\frac{3}{2}\times 0
Substitute 0 for c in the equation b=-\frac{1}{2}-\frac{3}{2}c.
b=-\frac{1}{2}
Calculate b from b=-\frac{1}{2}-\frac{3}{2}\times 0.
a=-\left(-\frac{1}{2}\right)+1-0
Substitute -\frac{1}{2} for b and 0 for c in the equation a=-b+1-c.
a=\frac{3}{2}
Calculate a from a=-\left(-\frac{1}{2}\right)+1-0.
a=\frac{3}{2} b=-\frac{1}{2} c=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}