\left\{ \begin{array} { l } { 0.9 x = 0.95 y } \\ { x + y = 370 } \end{array} \right.
Solve for x, y
x=190
y=180
Graph
Share
Copied to clipboard
0.9x-0.95y=0
Consider the first equation. Subtract 0.95y from both sides.
0.9x-0.95y=0,x+y=370
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.9x-0.95y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.9x=0.95y
Add \frac{19y}{20} to both sides of the equation.
x=\frac{10}{9}\times 0.95y
Divide both sides of the equation by 0.9, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{19}{18}y
Multiply \frac{10}{9} times \frac{19y}{20}.
\frac{19}{18}y+y=370
Substitute \frac{19y}{18} for x in the other equation, x+y=370.
\frac{37}{18}y=370
Add \frac{19y}{18} to y.
y=180
Divide both sides of the equation by \frac{37}{18}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{19}{18}\times 180
Substitute 180 for y in x=\frac{19}{18}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=190
Multiply \frac{19}{18} times 180.
x=190,y=180
The system is now solved.
0.9x-0.95y=0
Consider the first equation. Subtract 0.95y from both sides.
0.9x-0.95y=0,x+y=370
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}0.9&-0.95\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\370\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.9&-0.95\\1&1\end{matrix}\right))\left(\begin{matrix}0.9&-0.95\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.9&-0.95\\1&1\end{matrix}\right))\left(\begin{matrix}0\\370\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.9&-0.95\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.9&-0.95\\1&1\end{matrix}\right))\left(\begin{matrix}0\\370\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.9&-0.95\\1&1\end{matrix}\right))\left(\begin{matrix}0\\370\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{0.9-\left(-0.95\right)}&-\frac{-0.95}{0.9-\left(-0.95\right)}\\-\frac{1}{0.9-\left(-0.95\right)}&\frac{0.9}{0.9-\left(-0.95\right)}\end{matrix}\right)\left(\begin{matrix}0\\370\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{37}&\frac{19}{37}\\-\frac{20}{37}&\frac{18}{37}\end{matrix}\right)\left(\begin{matrix}0\\370\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{37}\times 370\\\frac{18}{37}\times 370\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}190\\180\end{matrix}\right)
Do the arithmetic.
x=190,y=180
Extract the matrix elements x and y.
0.9x-0.95y=0
Consider the first equation. Subtract 0.95y from both sides.
0.9x-0.95y=0,x+y=370
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.9x-0.95y=0,0.9x+0.9y=0.9\times 370
To make \frac{9x}{10} and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 0.9.
0.9x-0.95y=0,0.9x+0.9y=333
Simplify.
0.9x-0.9x-0.95y-0.9y=-333
Subtract 0.9x+0.9y=333 from 0.9x-0.95y=0 by subtracting like terms on each side of the equal sign.
-0.95y-0.9y=-333
Add \frac{9x}{10} to -\frac{9x}{10}. Terms \frac{9x}{10} and -\frac{9x}{10} cancel out, leaving an equation with only one variable that can be solved.
-1.85y=-333
Add -\frac{19y}{20} to -\frac{9y}{10}.
y=180
Divide both sides of the equation by -1.85, which is the same as multiplying both sides by the reciprocal of the fraction.
x+180=370
Substitute 180 for y in x+y=370. Because the resulting equation contains only one variable, you can solve for x directly.
x=190
Subtract 180 from both sides of the equation.
x=190,y=180
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}