\left\{ \begin{array} { l } { 0.7 x + 0.5 y = 260 } \\ { 0.5 x + 0.7 y = 220 } \end{array} \right.
Solve for x, y
x=300
y=100
Graph
Share
Copied to clipboard
0.7x+0.5y=260,0.5x+0.7y=220
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.7x+0.5y=260
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.7x=-0.5y+260
Subtract \frac{y}{2} from both sides of the equation.
x=\frac{10}{7}\left(-0.5y+260\right)
Divide both sides of the equation by 0.7, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{7}y+\frac{2600}{7}
Multiply \frac{10}{7} times -\frac{y}{2}+260.
0.5\left(-\frac{5}{7}y+\frac{2600}{7}\right)+0.7y=220
Substitute \frac{-5y+2600}{7} for x in the other equation, 0.5x+0.7y=220.
-\frac{5}{14}y+\frac{1300}{7}+0.7y=220
Multiply 0.5 times \frac{-5y+2600}{7}.
\frac{12}{35}y+\frac{1300}{7}=220
Add -\frac{5y}{14} to \frac{7y}{10}.
\frac{12}{35}y=\frac{240}{7}
Subtract \frac{1300}{7} from both sides of the equation.
y=100
Divide both sides of the equation by \frac{12}{35}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{7}\times 100+\frac{2600}{7}
Substitute 100 for y in x=-\frac{5}{7}y+\frac{2600}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-500+2600}{7}
Multiply -\frac{5}{7} times 100.
x=300
Add \frac{2600}{7} to -\frac{500}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=300,y=100
The system is now solved.
0.7x+0.5y=260,0.5x+0.7y=220
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}0.7&0.5\\0.5&0.7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}260\\220\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.7&0.5\\0.5&0.7\end{matrix}\right))\left(\begin{matrix}0.7&0.5\\0.5&0.7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.7&0.5\\0.5&0.7\end{matrix}\right))\left(\begin{matrix}260\\220\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.7&0.5\\0.5&0.7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.7&0.5\\0.5&0.7\end{matrix}\right))\left(\begin{matrix}260\\220\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.7&0.5\\0.5&0.7\end{matrix}\right))\left(\begin{matrix}260\\220\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.7}{0.7\times 0.7-0.5\times 0.5}&-\frac{0.5}{0.7\times 0.7-0.5\times 0.5}\\-\frac{0.5}{0.7\times 0.7-0.5\times 0.5}&\frac{0.7}{0.7\times 0.7-0.5\times 0.5}\end{matrix}\right)\left(\begin{matrix}260\\220\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{12}&-\frac{25}{12}\\-\frac{25}{12}&\frac{35}{12}\end{matrix}\right)\left(\begin{matrix}260\\220\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{12}\times 260-\frac{25}{12}\times 220\\-\frac{25}{12}\times 260+\frac{35}{12}\times 220\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\100\end{matrix}\right)
Do the arithmetic.
x=300,y=100
Extract the matrix elements x and y.
0.7x+0.5y=260,0.5x+0.7y=220
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.5\times 0.7x+0.5\times 0.5y=0.5\times 260,0.7\times 0.5x+0.7\times 0.7y=0.7\times 220
To make \frac{7x}{10} and \frac{x}{2} equal, multiply all terms on each side of the first equation by 0.5 and all terms on each side of the second by 0.7.
0.35x+0.25y=130,0.35x+0.49y=154
Simplify.
0.35x-0.35x+0.25y-0.49y=130-154
Subtract 0.35x+0.49y=154 from 0.35x+0.25y=130 by subtracting like terms on each side of the equal sign.
0.25y-0.49y=130-154
Add \frac{7x}{20} to -\frac{7x}{20}. Terms \frac{7x}{20} and -\frac{7x}{20} cancel out, leaving an equation with only one variable that can be solved.
-0.24y=130-154
Add \frac{y}{4} to -\frac{49y}{100}.
-0.24y=-24
Add 130 to -154.
y=100
Divide both sides of the equation by -0.24, which is the same as multiplying both sides by the reciprocal of the fraction.
0.5x+0.7\times 100=220
Substitute 100 for y in 0.5x+0.7y=220. Because the resulting equation contains only one variable, you can solve for x directly.
0.5x+70=220
Multiply 0.7 times 100.
0.5x=150
Subtract 70 from both sides of the equation.
x=300
Multiply both sides by 2.
x=300,y=100
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}