\left\{ \begin{array} { l } { 0.6 x + 0.5 y = 9400 } \\ { 0.4 x - 0.5 y = 1600 } \end{array} \right.
Solve for x, y
x=11000
y=5600
Graph
Share
Copied to clipboard
0.6x+0.5y=9400,0.4x-0.5y=1600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.6x+0.5y=9400
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.6x=-0.5y+9400
Subtract \frac{y}{2} from both sides of the equation.
x=\frac{5}{3}\left(-0.5y+9400\right)
Divide both sides of the equation by 0.6, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{6}y+\frac{47000}{3}
Multiply \frac{5}{3} times -\frac{y}{2}+9400.
0.4\left(-\frac{5}{6}y+\frac{47000}{3}\right)-0.5y=1600
Substitute -\frac{5y}{6}+\frac{47000}{3} for x in the other equation, 0.4x-0.5y=1600.
-\frac{1}{3}y+\frac{18800}{3}-0.5y=1600
Multiply 0.4 times -\frac{5y}{6}+\frac{47000}{3}.
-\frac{5}{6}y+\frac{18800}{3}=1600
Add -\frac{y}{3} to -\frac{y}{2}.
-\frac{5}{6}y=-\frac{14000}{3}
Subtract \frac{18800}{3} from both sides of the equation.
y=5600
Divide both sides of the equation by -\frac{5}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{6}\times 5600+\frac{47000}{3}
Substitute 5600 for y in x=-\frac{5}{6}y+\frac{47000}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-14000+47000}{3}
Multiply -\frac{5}{6} times 5600.
x=11000
Add \frac{47000}{3} to -\frac{14000}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=11000,y=5600
The system is now solved.
0.6x+0.5y=9400,0.4x-0.5y=1600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}0.6&0.5\\0.4&-0.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9400\\1600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.6&0.5\\0.4&-0.5\end{matrix}\right))\left(\begin{matrix}0.6&0.5\\0.4&-0.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&0.5\\0.4&-0.5\end{matrix}\right))\left(\begin{matrix}9400\\1600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.6&0.5\\0.4&-0.5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&0.5\\0.4&-0.5\end{matrix}\right))\left(\begin{matrix}9400\\1600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&0.5\\0.4&-0.5\end{matrix}\right))\left(\begin{matrix}9400\\1600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.5}{0.6\left(-0.5\right)-0.5\times 0.4}&-\frac{0.5}{0.6\left(-0.5\right)-0.5\times 0.4}\\-\frac{0.4}{0.6\left(-0.5\right)-0.5\times 0.4}&\frac{0.6}{0.6\left(-0.5\right)-0.5\times 0.4}\end{matrix}\right)\left(\begin{matrix}9400\\1600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\0.8&-1.2\end{matrix}\right)\left(\begin{matrix}9400\\1600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9400+1600\\0.8\times 9400-1.2\times 1600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11000\\5600\end{matrix}\right)
Do the arithmetic.
x=11000,y=5600
Extract the matrix elements x and y.
0.6x+0.5y=9400,0.4x-0.5y=1600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.4\times 0.6x+0.4\times 0.5y=0.4\times 9400,0.6\times 0.4x+0.6\left(-0.5\right)y=0.6\times 1600
To make \frac{3x}{5} and \frac{2x}{5} equal, multiply all terms on each side of the first equation by 0.4 and all terms on each side of the second by 0.6.
0.24x+0.2y=3760,0.24x-0.3y=960
Simplify.
0.24x-0.24x+0.2y+0.3y=3760-960
Subtract 0.24x-0.3y=960 from 0.24x+0.2y=3760 by subtracting like terms on each side of the equal sign.
0.2y+0.3y=3760-960
Add \frac{6x}{25} to -\frac{6x}{25}. Terms \frac{6x}{25} and -\frac{6x}{25} cancel out, leaving an equation with only one variable that can be solved.
0.5y=3760-960
Add \frac{y}{5} to \frac{3y}{10}.
0.5y=2800
Add 3760 to -960.
y=5600
Multiply both sides by 2.
0.4x-0.5\times 5600=1600
Substitute 5600 for y in 0.4x-0.5y=1600. Because the resulting equation contains only one variable, you can solve for x directly.
0.4x-2800=1600
Multiply -0.5 times 5600.
0.4x=4400
Add 2800 to both sides of the equation.
x=11000
Divide both sides of the equation by 0.4, which is the same as multiplying both sides by the reciprocal of the fraction.
x=11000,y=5600
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}