\left\{ \begin{array} { l } { 0.6 x + 0.5 y = 7400 } \\ { 0.5 y - 0.4 x = 1600 } \end{array} \right.
Solve for x, y
x=5800
y=7840
Graph
Share
Copied to clipboard
0.6x+0.5y=7400,-0.4x+0.5y=1600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.6x+0.5y=7400
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.6x=-0.5y+7400
Subtract \frac{y}{2} from both sides of the equation.
x=\frac{5}{3}\left(-0.5y+7400\right)
Divide both sides of the equation by 0.6, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{6}y+\frac{37000}{3}
Multiply \frac{5}{3} times -\frac{y}{2}+7400.
-0.4\left(-\frac{5}{6}y+\frac{37000}{3}\right)+0.5y=1600
Substitute -\frac{5y}{6}+\frac{37000}{3} for x in the other equation, -0.4x+0.5y=1600.
\frac{1}{3}y-\frac{14800}{3}+0.5y=1600
Multiply -0.4 times -\frac{5y}{6}+\frac{37000}{3}.
\frac{5}{6}y-\frac{14800}{3}=1600
Add \frac{y}{3} to \frac{y}{2}.
\frac{5}{6}y=\frac{19600}{3}
Add \frac{14800}{3} to both sides of the equation.
y=7840
Divide both sides of the equation by \frac{5}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{6}\times 7840+\frac{37000}{3}
Substitute 7840 for y in x=-\frac{5}{6}y+\frac{37000}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-19600+37000}{3}
Multiply -\frac{5}{6} times 7840.
x=5800
Add \frac{37000}{3} to -\frac{19600}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=5800,y=7840
The system is now solved.
0.6x+0.5y=7400,-0.4x+0.5y=1600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}0.6&0.5\\-0.4&0.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7400\\1600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.6&0.5\\-0.4&0.5\end{matrix}\right))\left(\begin{matrix}0.6&0.5\\-0.4&0.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&0.5\\-0.4&0.5\end{matrix}\right))\left(\begin{matrix}7400\\1600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.6&0.5\\-0.4&0.5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&0.5\\-0.4&0.5\end{matrix}\right))\left(\begin{matrix}7400\\1600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&0.5\\-0.4&0.5\end{matrix}\right))\left(\begin{matrix}7400\\1600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.5}{0.6\times 0.5-0.5\left(-0.4\right)}&-\frac{0.5}{0.6\times 0.5-0.5\left(-0.4\right)}\\-\frac{-0.4}{0.6\times 0.5-0.5\left(-0.4\right)}&\frac{0.6}{0.6\times 0.5-0.5\left(-0.4\right)}\end{matrix}\right)\left(\begin{matrix}7400\\1600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\0.8&1.2\end{matrix}\right)\left(\begin{matrix}7400\\1600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7400-1600\\0.8\times 7400+1.2\times 1600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5800\\7840\end{matrix}\right)
Do the arithmetic.
x=5800,y=7840
Extract the matrix elements x and y.
0.6x+0.5y=7400,-0.4x+0.5y=1600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.6x+0.4x+0.5y-0.5y=7400-1600
Subtract -0.4x+0.5y=1600 from 0.6x+0.5y=7400 by subtracting like terms on each side of the equal sign.
0.6x+0.4x=7400-1600
Add \frac{y}{2} to -\frac{y}{2}. Terms \frac{y}{2} and -\frac{y}{2} cancel out, leaving an equation with only one variable that can be solved.
x=7400-1600
Add \frac{3x}{5} to \frac{2x}{5}.
x=5800
Add 7400 to -1600.
-0.4\times 5800+0.5y=1600
Substitute 5800 for x in -0.4x+0.5y=1600. Because the resulting equation contains only one variable, you can solve for y directly.
-2320+0.5y=1600
Multiply -0.4 times 5800.
0.5y=3920
Add 2320 to both sides of the equation.
y=7840
Multiply both sides by 2.
x=5800,y=7840
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}