\left\{ \begin{array} { l } { 0.56 x + 0.28 y = 95.2 } \\ { 0.53 ( x + y ) = 106 } \end{array} \right.
Solve for x, y
x=140
y=60
Graph
Share
Copied to clipboard
x+y=\frac{106}{0.53}
Consider the second equation. Divide both sides by 0.53.
x+y=\frac{10600}{53}
Expand \frac{106}{0.53} by multiplying both numerator and the denominator by 100.
x+y=200
Divide 10600 by 53 to get 200.
0.56x+0.28y=95.2,x+y=200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.56x+0.28y=95.2
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.56x=-0.28y+95.2
Subtract \frac{7y}{25} from both sides of the equation.
x=\frac{25}{14}\left(-0.28y+95.2\right)
Divide both sides of the equation by 0.56, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-0.5y+170
Multiply \frac{25}{14} times -\frac{7y}{25}+95.2.
-0.5y+170+y=200
Substitute -\frac{y}{2}+170 for x in the other equation, x+y=200.
0.5y+170=200
Add -\frac{y}{2} to y.
0.5y=30
Subtract 170 from both sides of the equation.
y=60
Multiply both sides by 2.
x=-0.5\times 60+170
Substitute 60 for y in x=-0.5y+170. Because the resulting equation contains only one variable, you can solve for x directly.
x=-30+170
Multiply -0.5 times 60.
x=140
Add 170 to -30.
x=140,y=60
The system is now solved.
x+y=\frac{106}{0.53}
Consider the second equation. Divide both sides by 0.53.
x+y=\frac{10600}{53}
Expand \frac{106}{0.53} by multiplying both numerator and the denominator by 100.
x+y=200
Divide 10600 by 53 to get 200.
0.56x+0.28y=95.2,x+y=200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}0.56&0.28\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}95.2\\200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.56&0.28\\1&1\end{matrix}\right))\left(\begin{matrix}0.56&0.28\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.56&0.28\\1&1\end{matrix}\right))\left(\begin{matrix}95.2\\200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.56&0.28\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.56&0.28\\1&1\end{matrix}\right))\left(\begin{matrix}95.2\\200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.56&0.28\\1&1\end{matrix}\right))\left(\begin{matrix}95.2\\200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{0.56-0.28}&-\frac{0.28}{0.56-0.28}\\-\frac{1}{0.56-0.28}&\frac{0.56}{0.56-0.28}\end{matrix}\right)\left(\begin{matrix}95.2\\200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{7}&-1\\-\frac{25}{7}&2\end{matrix}\right)\left(\begin{matrix}95.2\\200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{7}\times 95.2-200\\-\frac{25}{7}\times 95.2+2\times 200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}140\\60\end{matrix}\right)
Do the arithmetic.
x=140,y=60
Extract the matrix elements x and y.
x+y=\frac{106}{0.53}
Consider the second equation. Divide both sides by 0.53.
x+y=\frac{10600}{53}
Expand \frac{106}{0.53} by multiplying both numerator and the denominator by 100.
x+y=200
Divide 10600 by 53 to get 200.
0.56x+0.28y=95.2,x+y=200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.56x+0.28y=95.2,0.56x+0.56y=0.56\times 200
To make \frac{14x}{25} and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 0.56.
0.56x+0.28y=95.2,0.56x+0.56y=112
Simplify.
0.56x-0.56x+0.28y-0.56y=95.2-112
Subtract 0.56x+0.56y=112 from 0.56x+0.28y=95.2 by subtracting like terms on each side of the equal sign.
0.28y-0.56y=95.2-112
Add \frac{14x}{25} to -\frac{14x}{25}. Terms \frac{14x}{25} and -\frac{14x}{25} cancel out, leaving an equation with only one variable that can be solved.
-0.28y=95.2-112
Add \frac{7y}{25} to -\frac{14y}{25}.
-0.28y=-16.8
Add 95.2 to -112.
y=60
Divide both sides of the equation by -0.28, which is the same as multiplying both sides by the reciprocal of the fraction.
x+60=200
Substitute 60 for y in x+y=200. Because the resulting equation contains only one variable, you can solve for x directly.
x=140
Subtract 60 from both sides of the equation.
x=140,y=60
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}