\left\{ \begin{array} { l } { 0 = 4 - 4 t + 3 s } \\ { 0 = 3 t + 5 } \\ { z = - 2 - t - 3 s } \end{array} \right.
Solve for t, s, z
z = \frac{31}{3} = 10\frac{1}{3} \approx 10.333333333
t = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
s = -\frac{32}{9} = -3\frac{5}{9} \approx -3.555555556
Share
Copied to clipboard
3t+5=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
3t=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
t=-\frac{5}{3}
Divide both sides by 3.
0=4-4\left(-\frac{5}{3}\right)+3s
Consider the first equation. Insert the known values of variables into the equation.
0=4+\frac{20}{3}+3s
Multiply -4 and -\frac{5}{3} to get \frac{20}{3}.
0=\frac{32}{3}+3s
Add 4 and \frac{20}{3} to get \frac{32}{3}.
\frac{32}{3}+3s=0
Swap sides so that all variable terms are on the left hand side.
3s=-\frac{32}{3}
Subtract \frac{32}{3} from both sides. Anything subtracted from zero gives its negation.
s=\frac{-\frac{32}{3}}{3}
Divide both sides by 3.
s=\frac{-32}{3\times 3}
Express \frac{-\frac{32}{3}}{3} as a single fraction.
s=\frac{-32}{9}
Multiply 3 and 3 to get 9.
s=-\frac{32}{9}
Fraction \frac{-32}{9} can be rewritten as -\frac{32}{9} by extracting the negative sign.
z=-2-\left(-\frac{5}{3}\right)-3\left(-\frac{32}{9}\right)
Consider the third equation. Insert the known values of variables into the equation.
z=-2+\frac{5}{3}-3\left(-\frac{32}{9}\right)
Multiply -1 and -\frac{5}{3} to get \frac{5}{3}.
z=-\frac{1}{3}-3\left(-\frac{32}{9}\right)
Add -2 and \frac{5}{3} to get -\frac{1}{3}.
z=-\frac{1}{3}+\frac{32}{3}
Multiply -3 and -\frac{32}{9} to get \frac{32}{3}.
z=\frac{31}{3}
Add -\frac{1}{3} and \frac{32}{3} to get \frac{31}{3}.
t=-\frac{5}{3} s=-\frac{32}{9} z=\frac{31}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}