\left\{ \begin{array} { l } { - y = ( x - 1 ) 0 } \\ { y = 2 x - 2 } \end{array} \right.
Solve for y, x
x=1
y=0
Graph
Share
Copied to clipboard
-y=0
Consider the first equation. Anything times zero gives zero.
y=0
Divide both sides by -1. Zero divided by any non-zero number gives zero.
0=2x-2
Consider the second equation. Insert the known values of variables into the equation.
2x-2=0
Swap sides so that all variable terms are on the left hand side.
2x=2
Add 2 to both sides. Anything plus zero gives itself.
x=\frac{2}{2}
Divide both sides by 2.
x=1
Divide 2 by 2 to get 1.
y=0 x=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}