Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=4x_{2}+2x_{3}-3
Solve -x_{1}+4x_{2}+2x_{3}=3 for x_{1}.
3\left(4x_{2}+2x_{3}-3\right)+4x_{2}+2x_{3}-3+x_{3}=5 6\left(4x_{2}+2x_{3}-3\right)+7x_{3}=12
Substitute 4x_{2}+2x_{3}-3 for x_{1} in the second and third equation.
x_{2}=\frac{17}{16}-\frac{9}{16}x_{3} x_{3}=\frac{30}{19}-\frac{24}{19}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{30}{19}-\frac{24}{19}\left(\frac{17}{16}-\frac{9}{16}x_{3}\right)
Substitute \frac{17}{16}-\frac{9}{16}x_{3} for x_{2} in the equation x_{3}=\frac{30}{19}-\frac{24}{19}x_{2}.
x_{3}=\frac{9}{11}
Solve x_{3}=\frac{30}{19}-\frac{24}{19}\left(\frac{17}{16}-\frac{9}{16}x_{3}\right) for x_{3}.
x_{2}=\frac{17}{16}-\frac{9}{16}\times \frac{9}{11}
Substitute \frac{9}{11} for x_{3} in the equation x_{2}=\frac{17}{16}-\frac{9}{16}x_{3}.
x_{2}=\frac{53}{88}
Calculate x_{2} from x_{2}=\frac{17}{16}-\frac{9}{16}\times \frac{9}{11}.
x_{1}=4\times \frac{53}{88}+2\times \frac{9}{11}-3
Substitute \frac{53}{88} for x_{2} and \frac{9}{11} for x_{3} in the equation x_{1}=4x_{2}+2x_{3}-3.
x_{1}=\frac{23}{22}
Calculate x_{1} from x_{1}=4\times \frac{53}{88}+2\times \frac{9}{11}-3.
x_{1}=\frac{23}{22} x_{2}=\frac{53}{88} x_{3}=\frac{9}{11}
The system is now solved.