Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x+7y=-2,4x+10y=36
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-4x+7y=-2
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-4x=-7y-2
Subtract 7y from both sides of the equation.
x=-\frac{1}{4}\left(-7y-2\right)
Divide both sides by -4.
x=\frac{7}{4}y+\frac{1}{2}
Multiply -\frac{1}{4} times -7y-2.
4\left(\frac{7}{4}y+\frac{1}{2}\right)+10y=36
Substitute \frac{7y}{4}+\frac{1}{2} for x in the other equation, 4x+10y=36.
7y+2+10y=36
Multiply 4 times \frac{7y}{4}+\frac{1}{2}.
17y+2=36
Add 7y to 10y.
17y=34
Subtract 2 from both sides of the equation.
y=2
Divide both sides by 17.
x=\frac{7}{4}\times 2+\frac{1}{2}
Substitute 2 for y in x=\frac{7}{4}y+\frac{1}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{7+1}{2}
Multiply \frac{7}{4} times 2.
x=4
Add \frac{1}{2} to \frac{7}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=4,y=2
The system is now solved.
-4x+7y=-2,4x+10y=36
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-4&7\\4&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\36\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-4&7\\4&10\end{matrix}\right))\left(\begin{matrix}-4&7\\4&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&7\\4&10\end{matrix}\right))\left(\begin{matrix}-2\\36\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-4&7\\4&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&7\\4&10\end{matrix}\right))\left(\begin{matrix}-2\\36\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&7\\4&10\end{matrix}\right))\left(\begin{matrix}-2\\36\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{-4\times 10-7\times 4}&-\frac{7}{-4\times 10-7\times 4}\\-\frac{4}{-4\times 10-7\times 4}&-\frac{4}{-4\times 10-7\times 4}\end{matrix}\right)\left(\begin{matrix}-2\\36\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{34}&\frac{7}{68}\\\frac{1}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-2\\36\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{34}\left(-2\right)+\frac{7}{68}\times 36\\\frac{1}{17}\left(-2\right)+\frac{1}{17}\times 36\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Do the arithmetic.
x=4,y=2
Extract the matrix elements x and y.
-4x+7y=-2,4x+10y=36
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\left(-4\right)x+4\times 7y=4\left(-2\right),-4\times 4x-4\times 10y=-4\times 36
To make -4x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by -4.
-16x+28y=-8,-16x-40y=-144
Simplify.
-16x+16x+28y+40y=-8+144
Subtract -16x-40y=-144 from -16x+28y=-8 by subtracting like terms on each side of the equal sign.
28y+40y=-8+144
Add -16x to 16x. Terms -16x and 16x cancel out, leaving an equation with only one variable that can be solved.
68y=-8+144
Add 28y to 40y.
68y=136
Add -8 to 144.
y=2
Divide both sides by 68.
4x+10\times 2=36
Substitute 2 for y in 4x+10y=36. Because the resulting equation contains only one variable, you can solve for x directly.
4x+20=36
Multiply 10 times 2.
4x=16
Subtract 20 from both sides of the equation.
x=4
Divide both sides by 4.
x=4,y=2
The system is now solved.