\left\{ \begin{array} { l } { - 4 x + 2 y + 20 = 0 } \\ { x ^ { 2 } + y ^ { 2 } - 20 = 0 } \end{array} \right.
Solve for x, y
x=4
y=-2
Graph
Share
Copied to clipboard
-4x+2y+20=0,y^{2}+x^{2}-20=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-4x+2y+20=0
Solve -4x+2y+20=0 for x by isolating x on the left hand side of the equal sign.
-4x+2y=-20
Subtract 20 from both sides of the equation.
-4x=-2y-20
Subtract 2y from both sides of the equation.
x=\frac{1}{2}y+5
Divide both sides by -4.
y^{2}+\left(\frac{1}{2}y+5\right)^{2}-20=0
Substitute \frac{1}{2}y+5 for x in the other equation, y^{2}+x^{2}-20=0.
y^{2}+\frac{1}{4}y^{2}+5y+25-20=0
Square \frac{1}{2}y+5.
\frac{5}{4}y^{2}+5y+25-20=0
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}+5y+5=0
Add 1\times 5^{2} to -20.
y=\frac{-5±\sqrt{5^{2}-4\times \frac{5}{4}\times 5}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{1}{2}\right)^{2} for a, 1\times 5\times \frac{1}{2}\times 2 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\times \frac{5}{4}\times 5}}{2\times \frac{5}{4}}
Square 1\times 5\times \frac{1}{2}\times 2.
y=\frac{-5±\sqrt{25-5\times 5}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{-5±\sqrt{25-25}}{2\times \frac{5}{4}}
Multiply -5 times 5.
y=\frac{-5±\sqrt{0}}{2\times \frac{5}{4}}
Add 25 to -25.
y=-\frac{5}{2\times \frac{5}{4}}
Take the square root of 0.
y=-\frac{5}{\frac{5}{2}}
Multiply 2 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=-2
Divide -5 by \frac{5}{2} by multiplying -5 by the reciprocal of \frac{5}{2}.
x=\frac{1}{2}\left(-2\right)+5
There are two solutions for y: -2 and -2. Substitute -2 for y in the equation x=\frac{1}{2}y+5 to find the corresponding solution for x that satisfies both equations.
x=-1+5
Multiply \frac{1}{2} times -2.
x=4
Add -2\times \frac{1}{2} to 5.
x=4,y=-2\text{ or }x=4,y=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}