Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x+2y+20=0,y^{2}+x^{2}-20=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-4x+2y+20=0
Solve -4x+2y+20=0 for x by isolating x on the left hand side of the equal sign.
-4x+2y=-20
Subtract 20 from both sides of the equation.
-4x=-2y-20
Subtract 2y from both sides of the equation.
x=\frac{1}{2}y+5
Divide both sides by -4.
y^{2}+\left(\frac{1}{2}y+5\right)^{2}-20=0
Substitute \frac{1}{2}y+5 for x in the other equation, y^{2}+x^{2}-20=0.
y^{2}+\frac{1}{4}y^{2}+5y+25-20=0
Square \frac{1}{2}y+5.
\frac{5}{4}y^{2}+5y+25-20=0
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}+5y+5=0
Add 1\times 5^{2} to -20.
y=\frac{-5±\sqrt{5^{2}-4\times \frac{5}{4}\times 5}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{1}{2}\right)^{2} for a, 1\times 5\times \frac{1}{2}\times 2 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\times \frac{5}{4}\times 5}}{2\times \frac{5}{4}}
Square 1\times 5\times \frac{1}{2}\times 2.
y=\frac{-5±\sqrt{25-5\times 5}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{-5±\sqrt{25-25}}{2\times \frac{5}{4}}
Multiply -5 times 5.
y=\frac{-5±\sqrt{0}}{2\times \frac{5}{4}}
Add 25 to -25.
y=-\frac{5}{2\times \frac{5}{4}}
Take the square root of 0.
y=-\frac{5}{\frac{5}{2}}
Multiply 2 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=-2
Divide -5 by \frac{5}{2} by multiplying -5 by the reciprocal of \frac{5}{2}.
x=\frac{1}{2}\left(-2\right)+5
There are two solutions for y: -2 and -2. Substitute -2 for y in the equation x=\frac{1}{2}y+5 to find the corresponding solution for x that satisfies both equations.
x=-1+5
Multiply \frac{1}{2} times -2.
x=4
Add -2\times \frac{1}{2} to 5.
x=4,y=-2\text{ or }x=4,y=-2
The system is now solved.