\left\{ \begin{array} { l } { - 3 x - 3 y = - 20 x + 3 } \\ { 7 x - 6 y = - 3 } \end{array} \right.
Solve for x, y
x=\frac{1}{3}\approx 0.333333333
y=\frac{8}{9}\approx 0.888888889
Graph
Share
Copied to clipboard
-3x-3y+20x=3
Consider the first equation. Add 20x to both sides.
17x-3y=3
Combine -3x and 20x to get 17x.
17x-3y=3,7x-6y=-3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
17x-3y=3
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
17x=3y+3
Add 3y to both sides of the equation.
x=\frac{1}{17}\left(3y+3\right)
Divide both sides by 17.
x=\frac{3}{17}y+\frac{3}{17}
Multiply \frac{1}{17} times 3+3y.
7\left(\frac{3}{17}y+\frac{3}{17}\right)-6y=-3
Substitute \frac{3+3y}{17} for x in the other equation, 7x-6y=-3.
\frac{21}{17}y+\frac{21}{17}-6y=-3
Multiply 7 times \frac{3+3y}{17}.
-\frac{81}{17}y+\frac{21}{17}=-3
Add \frac{21y}{17} to -6y.
-\frac{81}{17}y=-\frac{72}{17}
Subtract \frac{21}{17} from both sides of the equation.
y=\frac{8}{9}
Divide both sides of the equation by -\frac{81}{17}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{3}{17}\times \frac{8}{9}+\frac{3}{17}
Substitute \frac{8}{9} for y in x=\frac{3}{17}y+\frac{3}{17}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{8}{51}+\frac{3}{17}
Multiply \frac{3}{17} times \frac{8}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{3}
Add \frac{3}{17} to \frac{8}{51} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{3},y=\frac{8}{9}
The system is now solved.
-3x-3y+20x=3
Consider the first equation. Add 20x to both sides.
17x-3y=3
Combine -3x and 20x to get 17x.
17x-3y=3,7x-6y=-3
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}17&-3\\7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-3\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}17&-3\\7&-6\end{matrix}\right))\left(\begin{matrix}17&-3\\7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}17&-3\\7&-6\end{matrix}\right))\left(\begin{matrix}3\\-3\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}17&-3\\7&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}17&-3\\7&-6\end{matrix}\right))\left(\begin{matrix}3\\-3\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}17&-3\\7&-6\end{matrix}\right))\left(\begin{matrix}3\\-3\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{17\left(-6\right)-\left(-3\times 7\right)}&-\frac{-3}{17\left(-6\right)-\left(-3\times 7\right)}\\-\frac{7}{17\left(-6\right)-\left(-3\times 7\right)}&\frac{17}{17\left(-6\right)-\left(-3\times 7\right)}\end{matrix}\right)\left(\begin{matrix}3\\-3\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{27}&-\frac{1}{27}\\\frac{7}{81}&-\frac{17}{81}\end{matrix}\right)\left(\begin{matrix}3\\-3\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{27}\times 3-\frac{1}{27}\left(-3\right)\\\frac{7}{81}\times 3-\frac{17}{81}\left(-3\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\\frac{8}{9}\end{matrix}\right)
Do the arithmetic.
x=\frac{1}{3},y=\frac{8}{9}
Extract the matrix elements x and y.
-3x-3y+20x=3
Consider the first equation. Add 20x to both sides.
17x-3y=3
Combine -3x and 20x to get 17x.
17x-3y=3,7x-6y=-3
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7\times 17x+7\left(-3\right)y=7\times 3,17\times 7x+17\left(-6\right)y=17\left(-3\right)
To make 17x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 17.
119x-21y=21,119x-102y=-51
Simplify.
119x-119x-21y+102y=21+51
Subtract 119x-102y=-51 from 119x-21y=21 by subtracting like terms on each side of the equal sign.
-21y+102y=21+51
Add 119x to -119x. Terms 119x and -119x cancel out, leaving an equation with only one variable that can be solved.
81y=21+51
Add -21y to 102y.
81y=72
Add 21 to 51.
y=\frac{8}{9}
Divide both sides by 81.
7x-6\times \frac{8}{9}=-3
Substitute \frac{8}{9} for y in 7x-6y=-3. Because the resulting equation contains only one variable, you can solve for x directly.
7x-\frac{16}{3}=-3
Multiply -6 times \frac{8}{9}.
7x=\frac{7}{3}
Add \frac{16}{3} to both sides of the equation.
x=\frac{1}{3}
Divide both sides by 7.
x=\frac{1}{3},y=\frac{8}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}