Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x+17y=-30,9x-15y=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-2x+17y=-30
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-2x=-17y-30
Subtract 17y from both sides of the equation.
x=-\frac{1}{2}\left(-17y-30\right)
Divide both sides by -2.
x=\frac{17}{2}y+15
Multiply -\frac{1}{2} times -17y-30.
9\left(\frac{17}{2}y+15\right)-15y=12
Substitute \frac{17y}{2}+15 for x in the other equation, 9x-15y=12.
\frac{153}{2}y+135-15y=12
Multiply 9 times \frac{17y}{2}+15.
\frac{123}{2}y+135=12
Add \frac{153y}{2} to -15y.
\frac{123}{2}y=-123
Subtract 135 from both sides of the equation.
y=-2
Divide both sides of the equation by \frac{123}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{17}{2}\left(-2\right)+15
Substitute -2 for y in x=\frac{17}{2}y+15. Because the resulting equation contains only one variable, you can solve for x directly.
x=-17+15
Multiply \frac{17}{2} times -2.
x=-2
Add 15 to -17.
x=-2,y=-2
The system is now solved.
-2x+17y=-30,9x-15y=12
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-2&17\\9&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-30\\12\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-2&17\\9&-15\end{matrix}\right))\left(\begin{matrix}-2&17\\9&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&17\\9&-15\end{matrix}\right))\left(\begin{matrix}-30\\12\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-2&17\\9&-15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&17\\9&-15\end{matrix}\right))\left(\begin{matrix}-30\\12\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&17\\9&-15\end{matrix}\right))\left(\begin{matrix}-30\\12\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{-2\left(-15\right)-17\times 9}&-\frac{17}{-2\left(-15\right)-17\times 9}\\-\frac{9}{-2\left(-15\right)-17\times 9}&-\frac{2}{-2\left(-15\right)-17\times 9}\end{matrix}\right)\left(\begin{matrix}-30\\12\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{41}&\frac{17}{123}\\\frac{3}{41}&\frac{2}{123}\end{matrix}\right)\left(\begin{matrix}-30\\12\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{41}\left(-30\right)+\frac{17}{123}\times 12\\\frac{3}{41}\left(-30\right)+\frac{2}{123}\times 12\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-2\end{matrix}\right)
Do the arithmetic.
x=-2,y=-2
Extract the matrix elements x and y.
-2x+17y=-30,9x-15y=12
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9\left(-2\right)x+9\times 17y=9\left(-30\right),-2\times 9x-2\left(-15\right)y=-2\times 12
To make -2x and 9x equal, multiply all terms on each side of the first equation by 9 and all terms on each side of the second by -2.
-18x+153y=-270,-18x+30y=-24
Simplify.
-18x+18x+153y-30y=-270+24
Subtract -18x+30y=-24 from -18x+153y=-270 by subtracting like terms on each side of the equal sign.
153y-30y=-270+24
Add -18x to 18x. Terms -18x and 18x cancel out, leaving an equation with only one variable that can be solved.
123y=-270+24
Add 153y to -30y.
123y=-246
Add -270 to 24.
y=-2
Divide both sides by 123.
9x-15\left(-2\right)=12
Substitute -2 for y in 9x-15y=12. Because the resulting equation contains only one variable, you can solve for x directly.
9x+30=12
Multiply -15 times -2.
9x=-18
Subtract 30 from both sides of the equation.
x=-2
Divide both sides by 9.
x=-2,y=-2
The system is now solved.