Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

-16x-16y=210,-4x-13y=75
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-16x-16y=210
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-16x=16y+210
Add 16y to both sides of the equation.
x=-\frac{1}{16}\left(16y+210\right)
Divide both sides by -16.
x=-y-\frac{105}{8}
Multiply -\frac{1}{16} times 16y+210.
-4\left(-y-\frac{105}{8}\right)-13y=75
Substitute -y-\frac{105}{8} for x in the other equation, -4x-13y=75.
4y+\frac{105}{2}-13y=75
Multiply -4 times -y-\frac{105}{8}.
-9y+\frac{105}{2}=75
Add 4y to -13y.
-9y=\frac{45}{2}
Subtract \frac{105}{2} from both sides of the equation.
y=-\frac{5}{2}
Divide both sides by -9.
x=-\left(-\frac{5}{2}\right)-\frac{105}{8}
Substitute -\frac{5}{2} for y in x=-y-\frac{105}{8}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{5}{2}-\frac{105}{8}
Multiply -1 times -\frac{5}{2}.
x=-\frac{85}{8}
Add -\frac{105}{8} to \frac{5}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{85}{8},y=-\frac{5}{2}
The system is now solved.
-16x-16y=210,-4x-13y=75
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-16&-16\\-4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}210\\75\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-16&-16\\-4&-13\end{matrix}\right))\left(\begin{matrix}-16&-16\\-4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-16&-16\\-4&-13\end{matrix}\right))\left(\begin{matrix}210\\75\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-16&-16\\-4&-13\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-16&-16\\-4&-13\end{matrix}\right))\left(\begin{matrix}210\\75\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-16&-16\\-4&-13\end{matrix}\right))\left(\begin{matrix}210\\75\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{-16\left(-13\right)-\left(-16\left(-4\right)\right)}&-\frac{-16}{-16\left(-13\right)-\left(-16\left(-4\right)\right)}\\-\frac{-4}{-16\left(-13\right)-\left(-16\left(-4\right)\right)}&-\frac{16}{-16\left(-13\right)-\left(-16\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}210\\75\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{144}&\frac{1}{9}\\\frac{1}{36}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}210\\75\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{144}\times 210+\frac{1}{9}\times 75\\\frac{1}{36}\times 210-\frac{1}{9}\times 75\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{85}{8}\\-\frac{5}{2}\end{matrix}\right)
Do the arithmetic.
x=-\frac{85}{8},y=-\frac{5}{2}
Extract the matrix elements x and y.
-16x-16y=210,-4x-13y=75
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-4\left(-16\right)x-4\left(-16\right)y=-4\times 210,-16\left(-4\right)x-16\left(-13\right)y=-16\times 75
To make -16x and -4x equal, multiply all terms on each side of the first equation by -4 and all terms on each side of the second by -16.
64x+64y=-840,64x+208y=-1200
Simplify.
64x-64x+64y-208y=-840+1200
Subtract 64x+208y=-1200 from 64x+64y=-840 by subtracting like terms on each side of the equal sign.
64y-208y=-840+1200
Add 64x to -64x. Terms 64x and -64x cancel out, leaving an equation with only one variable that can be solved.
-144y=-840+1200
Add 64y to -208y.
-144y=360
Add -840 to 1200.
y=-\frac{5}{2}
Divide both sides by -144.
-4x-13\left(-\frac{5}{2}\right)=75
Substitute -\frac{5}{2} for y in -4x-13y=75. Because the resulting equation contains only one variable, you can solve for x directly.
-4x+\frac{65}{2}=75
Multiply -13 times -\frac{5}{2}.
-4x=\frac{85}{2}
Subtract \frac{65}{2} from both sides of the equation.
x=-\frac{85}{8}
Divide both sides by -4.
x=-\frac{85}{8},y=-\frac{5}{2}
The system is now solved.