\left\{ \begin{array} { l } { - 12 S - 5 t = - 6 } \\ { - t - 5 = - 4 } \end{array} \right.
Solve for S, t
t=-1
S=\frac{11}{12}\approx 0.916666667
Share
Copied to clipboard
-t=-4+5
Consider the second equation. Add 5 to both sides.
-t=1
Add -4 and 5 to get 1.
t=-1
Divide both sides by -1.
-12S-5\left(-1\right)=-6
Consider the first equation. Insert the known values of variables into the equation.
-12S+5=-6
Multiply -5 and -1 to get 5.
-12S=-6-5
Subtract 5 from both sides.
-12S=-11
Subtract 5 from -6 to get -11.
S=\frac{-11}{-12}
Divide both sides by -12.
S=\frac{11}{12}
Fraction \frac{-11}{-12} can be simplified to \frac{11}{12} by removing the negative sign from both the numerator and the denominator.
S=\frac{11}{12} t=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}