\left\{ \begin{array} { l } { - 12 + 2 y + 4 = - 21 + y + 11 } \\ { - 9 - 13 y - 2 = - 6 - a y + 1 } \end{array} \right.
Solve for y, a
y=-2
a=10
Graph
Share
Copied to clipboard
-8+2y=-21+y+11
Consider the first equation. Add -12 and 4 to get -8.
-8+2y=-10+y
Add -21 and 11 to get -10.
-8+2y-y=-10
Subtract y from both sides.
-8+y=-10
Combine 2y and -y to get y.
y=-10+8
Add 8 to both sides.
y=-2
Add -10 and 8 to get -2.
-9-13\left(-2\right)-2=-6-a\left(-2\right)+1
Consider the second equation. Insert the known values of variables into the equation.
-9+26-2=-6-a\left(-2\right)+1
Multiply -13 and -2 to get 26.
17-2=-6-a\left(-2\right)+1
Add -9 and 26 to get 17.
15=-6-a\left(-2\right)+1
Subtract 2 from 17 to get 15.
15=-6+2a+1
Multiply -1 and -2 to get 2.
15=-5+2a
Add -6 and 1 to get -5.
-5+2a=15
Swap sides so that all variable terms are on the left hand side.
2a=15+5
Add 5 to both sides.
2a=20
Add 15 and 5 to get 20.
a=\frac{20}{2}
Divide both sides by 2.
a=10
Divide 20 by 2 to get 10.
y=-2 a=10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}