\left\{ \begin{array} { l } { - 11 = - 3 / 2 + b } \\ { 9 = 81 c + b } \end{array} \right.
Solve for b, c
b = -\frac{19}{2} = -9\frac{1}{2} = -9.5
c=\frac{37}{162}\approx 0.228395062
Share
Copied to clipboard
-\frac{3}{2}+b=-11
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
b=-11+\frac{3}{2}
Add \frac{3}{2} to both sides.
b=-\frac{19}{2}
Add -11 and \frac{3}{2} to get -\frac{19}{2}.
9=81c-\frac{19}{2}
Consider the second equation. Insert the known values of variables into the equation.
81c-\frac{19}{2}=9
Swap sides so that all variable terms are on the left hand side.
81c=9+\frac{19}{2}
Add \frac{19}{2} to both sides.
81c=\frac{37}{2}
Add 9 and \frac{19}{2} to get \frac{37}{2}.
c=\frac{\frac{37}{2}}{81}
Divide both sides by 81.
c=\frac{37}{2\times 81}
Express \frac{\frac{37}{2}}{81} as a single fraction.
c=\frac{37}{162}
Multiply 2 and 81 to get 162.
b=-\frac{19}{2} c=\frac{37}{162}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}