\left\{ \begin{array} { l } { - 1 \frac { 3 } { 4 } = b } \\ { - 2 = \frac { 1 } { 2 } k + b } \end{array} \right.
Solve for b, k
b = -\frac{7}{4} = -1\frac{3}{4} = -1.75
k=-\frac{1}{2}=-0.5
Share
Copied to clipboard
-\frac{4+3}{4}=b
Consider the first equation. Multiply 1 and 4 to get 4.
-\frac{7}{4}=b
Add 4 and 3 to get 7.
b=-\frac{7}{4}
Swap sides so that all variable terms are on the left hand side.
-2=\frac{1}{2}k-\frac{7}{4}
Consider the second equation. Insert the known values of variables into the equation.
\frac{1}{2}k-\frac{7}{4}=-2
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}k=-2+\frac{7}{4}
Add \frac{7}{4} to both sides.
\frac{1}{2}k=-\frac{1}{4}
Add -2 and \frac{7}{4} to get -\frac{1}{4}.
k=-\frac{1}{4}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
k=-\frac{1}{2}
Multiply -\frac{1}{4} and 2 to get -\frac{1}{2}.
b=-\frac{7}{4} k=-\frac{1}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}