\left\{ \begin{array} { l } { - \frac { 9 } { 4 } = 12 + b } \\ { 1 = 4 k + b } \end{array} \right.
Solve for b, k
b = -\frac{57}{4} = -14\frac{1}{4} = -14.25
k = \frac{61}{16} = 3\frac{13}{16} = 3.8125
Share
Copied to clipboard
12+b=-\frac{9}{4}
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
b=-\frac{9}{4}-12
Subtract 12 from both sides.
b=-\frac{57}{4}
Subtract 12 from -\frac{9}{4} to get -\frac{57}{4}.
1=4k-\frac{57}{4}
Consider the second equation. Insert the known values of variables into the equation.
4k-\frac{57}{4}=1
Swap sides so that all variable terms are on the left hand side.
4k=1+\frac{57}{4}
Add \frac{57}{4} to both sides.
4k=\frac{61}{4}
Add 1 and \frac{57}{4} to get \frac{61}{4}.
k=\frac{\frac{61}{4}}{4}
Divide both sides by 4.
k=\frac{61}{4\times 4}
Express \frac{\frac{61}{4}}{4} as a single fraction.
k=\frac{61}{16}
Multiply 4 and 4 to get 16.
b=-\frac{57}{4} k=\frac{61}{16}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}