Skip to main content
Solve for α, β, t
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{3}\alpha +\frac{1}{4}\beta =t \frac{3}{4}\beta =1-t -\alpha -\frac{1}{4}\beta =-1
Reorder the equations.
t=\frac{2}{3}\alpha +\frac{1}{4}\beta
Solve \frac{2}{3}\alpha +\frac{1}{4}\beta =t for t.
\frac{3}{4}\beta =1-\left(\frac{2}{3}\alpha +\frac{1}{4}\beta \right)
Substitute \frac{2}{3}\alpha +\frac{1}{4}\beta for t in the equation \frac{3}{4}\beta =1-t.
\beta =1-\frac{2}{3}\alpha \alpha =-\frac{1}{4}\beta +1
Solve the second equation for \beta and the third equation for \alpha .
\alpha =-\frac{1}{4}\left(1-\frac{2}{3}\alpha \right)+1
Substitute 1-\frac{2}{3}\alpha for \beta in the equation \alpha =-\frac{1}{4}\beta +1.
\alpha =\frac{9}{10}
Solve \alpha =-\frac{1}{4}\left(1-\frac{2}{3}\alpha \right)+1 for \alpha .
\beta =1-\frac{2}{3}\times \frac{9}{10}
Substitute \frac{9}{10} for \alpha in the equation \beta =1-\frac{2}{3}\alpha .
\beta =\frac{2}{5}
Calculate \beta from \beta =1-\frac{2}{3}\times \frac{9}{10}.
t=\frac{2}{3}\times \frac{9}{10}+\frac{1}{4}\times \frac{2}{5}
Substitute \frac{2}{5} for \beta and \frac{9}{10} for \alpha in the equation t=\frac{2}{3}\alpha +\frac{1}{4}\beta .
t=\frac{7}{10}
Calculate t from t=\frac{2}{3}\times \frac{9}{10}+\frac{1}{4}\times \frac{2}{5}.
\alpha =\frac{9}{10} \beta =\frac{2}{5} t=\frac{7}{10}
The system is now solved.