\left\{ \begin{array} { l } { ( a - d ) + a + ( a + d ) = 120 } \\ { 4 ( a - d ) + 5 = a + d } \end{array} \right.
Solve for a, d
a=40
d=25
Share
Copied to clipboard
2a-d+a+d=120
Consider the first equation. Combine a and a to get 2a.
3a-d+d=120
Combine 2a and a to get 3a.
3a=120
Combine -d and d to get 0.
a=\frac{120}{3}
Divide both sides by 3.
a=40
Divide 120 by 3 to get 40.
4\left(40-d\right)+5=40+d
Consider the second equation. Insert the known values of variables into the equation.
160-4d+5=40+d
Use the distributive property to multiply 4 by 40-d.
165-4d=40+d
Add 160 and 5 to get 165.
165-4d-d=40
Subtract d from both sides.
165-5d=40
Combine -4d and -d to get -5d.
-5d=40-165
Subtract 165 from both sides.
-5d=-125
Subtract 165 from 40 to get -125.
d=\frac{-125}{-5}
Divide both sides by -5.
d=25
Divide -125 by -5 to get 25.
a=40 d=25
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}