Skip to main content
Solve for a, b
Tick mark Image

Similar Problems from Web Search

Share

a-2\left(b-2013\right)+2012=3,3\left(a+2012\right)+4\left(b-2013\right)=5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a-2\left(b-2013\right)+2012=3
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
a-2b+4026+2012=3
Multiply -2 times b-2013.
a-2b+6038=3
Add 4026 to 2012.
a-2b=-6035
Subtract 6038 from both sides of the equation.
a=2b-6035
Add 2b to both sides of the equation.
3\left(2b-6035+2012\right)+4\left(b-2013\right)=5
Substitute 2b-6035 for a in the other equation, 3\left(a+2012\right)+4\left(b-2013\right)=5.
3\left(2b-4023\right)+4\left(b-2013\right)=5
Add -6035 to 2012.
6b-12069+4\left(b-2013\right)=5
Multiply 3 times 2b-4023.
6b-12069+4b-8052=5
Multiply 4 times b-2013.
10b-12069-8052=5
Add 6b to 4b.
10b-20121=5
Add -12069 to -8052.
10b=20126
Add 20121 to both sides of the equation.
b=\frac{10063}{5}
Divide both sides by 10.
a=2\times \frac{10063}{5}-6035
Substitute \frac{10063}{5} for b in a=2b-6035. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{20126}{5}-6035
Multiply 2 times \frac{10063}{5}.
a=-\frac{10049}{5}
Add -6035 to \frac{20126}{5}.
a=-\frac{10049}{5},b=\frac{10063}{5}
The system is now solved.
a-2\left(b-2013\right)+2012=3,3\left(a+2012\right)+4\left(b-2013\right)=5
Put the equations in standard form and then use matrices to solve the system of equations.
a-2\left(b-2013\right)+2012=3
Simplify the first equation to put it in standard form.
a-2b+4026+2012=3
Multiply -2 times b-2013.
a-2b+6038=3
Add 4026 to 2012.
a-2b=-6035
Subtract 6038 from both sides of the equation.
3\left(a+2012\right)+4\left(b-2013\right)=5
Simplify the second equation to put it in standard form.
3a+6036+4\left(b-2013\right)=5
Multiply 3 times a+2012.
3a+6036+4b-8052=5
Multiply 4 times b-2013.
3a+4b-2016=5
Add 6036 to -8052.
3a+4b=2021
Add 2016 to both sides of the equation.
\left(\begin{matrix}1&-2\\3&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-6035\\2021\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}1&-2\\3&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}-6035\\2021\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-2\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}-6035\\2021\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}-6035\\2021\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\times 3\right)}&-\frac{-2}{4-\left(-2\times 3\right)}\\-\frac{3}{4-\left(-2\times 3\right)}&\frac{1}{4-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-6035\\2021\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\-\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-6035\\2021\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-6035\right)+\frac{1}{5}\times 2021\\-\frac{3}{10}\left(-6035\right)+\frac{1}{10}\times 2021\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{10049}{5}\\\frac{10063}{5}\end{matrix}\right)
Do the arithmetic.
a=-\frac{10049}{5},b=\frac{10063}{5}
Extract the matrix elements a and b.