\left\{ \begin{array} { l } { ( 2 a - 1 ) = 8 - x } \\ { 3 y = x - 12 } \end{array} \right.
Solve for x, y
x=9-2a
y=-\frac{2a}{3}-1
Graph
Share
Copied to clipboard
8-x=2a-1
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
-x=2a-1-8
Subtract 8 from both sides.
-x=2a-9
Subtract 8 from -1 to get -9.
3y-x=-12
Consider the second equation. Subtract x from both sides.
-x=2a-9,-x+3y=-12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-x=2a-9
Pick one of the two equations which is more simple to solve for x by isolating x on the left hand side of the equal sign.
x=9-2a
Divide both sides by -1.
-\left(9-2a\right)+3y=-12
Substitute -2a+9 for x in the other equation, -x+3y=-12.
3y=-2a-3
Subtract 2a-9 from both sides of the equation.
y=-\frac{2a}{3}-1
Divide both sides by 3.
x=9-2a,y=-\frac{2a}{3}-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}