Skip to main content
Solve for y, z
Tick mark Image

Similar Problems from Web Search

Share

\left(1+i\right)y+\left(-2-2i\right)z=-10,\left(1+3i\right)y+\left(-1+i\right)z=30-10i
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(1+i\right)y+\left(-2-2i\right)z=-10
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
\left(1+i\right)y=\left(2+2i\right)z-10
Subtract \left(-2-2i\right)z from both sides of the equation.
y=\left(\frac{1}{2}-\frac{1}{2}i\right)\left(\left(2+2i\right)z-10\right)
Divide both sides by 1+i.
y=2z+\left(-5+5i\right)
Multiply \frac{1}{2}-\frac{1}{2}i times \left(2+2i\right)z-10.
\left(1+3i\right)\left(2z+\left(-5+5i\right)\right)+\left(-1+i\right)z=30-10i
Substitute 2z+\left(-5+5i\right) for y in the other equation, \left(1+3i\right)y+\left(-1+i\right)z=30-10i.
\left(2+6i\right)z+\left(-20-10i\right)+\left(-1+i\right)z=30-10i
Multiply 1+3i times 2z+\left(-5+5i\right).
\left(1+7i\right)z+\left(-20-10i\right)=30-10i
Add \left(2+6i\right)z to \left(-1+i\right)z.
\left(1+7i\right)z=50
Add 20+10i to both sides of the equation.
z=1-7i
Divide both sides by 1+7i.
y=2\left(1-7i\right)+\left(-5+5i\right)
Substitute 1-7i for z in y=2z+\left(-5+5i\right). Because the resulting equation contains only one variable, you can solve for y directly.
y=2-14i+\left(-5+5i\right)
Multiply 2 times 1-7i.
y=-3-9i
Add -5+5i to 2-14i.
y=-3-9i,z=1-7i
The system is now solved.
\left(1+i\right)y+\left(-2-2i\right)z=-10,\left(1+3i\right)y+\left(-1+i\right)z=30-10i
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1+i&-2-2i\\1+3i&-1+i\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-10\\30-10i\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1+i&-2-2i\\1+3i&-1+i\end{matrix}\right))\left(\begin{matrix}1+i&-2-2i\\1+3i&-1+i\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}1+i&-2-2i\\1+3i&-1+i\end{matrix}\right))\left(\begin{matrix}-10\\30-10i\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1+i&-2-2i\\1+3i&-1+i\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}1+i&-2-2i\\1+3i&-1+i\end{matrix}\right))\left(\begin{matrix}-10\\30-10i\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}1+i&-2-2i\\1+3i&-1+i\end{matrix}\right))\left(\begin{matrix}-10\\30-10i\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{-1+i}{\left(1+i\right)\left(-1+i\right)-\left(-2-2i\right)\left(1+3i\right)}&-\frac{-2-2i}{\left(1+i\right)\left(-1+i\right)-\left(-2-2i\right)\left(1+3i\right)}\\-\frac{1+3i}{\left(1+i\right)\left(-1+i\right)-\left(-2-2i\right)\left(1+3i\right)}&\frac{1+i}{\left(1+i\right)\left(-1+i\right)-\left(-2-2i\right)\left(1+3i\right)}\end{matrix}\right)\left(\begin{matrix}-10\\30-10i\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{7}{50}+\frac{1}{50}i&\frac{1}{25}-\frac{7}{25}i\\-\frac{9}{50}+\frac{13}{50}i&\frac{1}{50}-\frac{7}{50}i\end{matrix}\right)\left(\begin{matrix}-10\\30-10i\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\left(\frac{7}{50}+\frac{1}{50}i\right)\left(-10\right)+\left(\frac{1}{25}-\frac{7}{25}i\right)\left(30-10i\right)\\\left(-\frac{9}{50}+\frac{13}{50}i\right)\left(-10\right)+\left(\frac{1}{50}-\frac{7}{50}i\right)\left(30-10i\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-3-9i\\1-7i\end{matrix}\right)
Do the arithmetic.
y=-3-9i,z=1-7i
Extract the matrix elements y and z.
\left(1+i\right)y+\left(-2-2i\right)z=-10,\left(1+3i\right)y+\left(-1+i\right)z=30-10i
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\left(1+3i\right)\left(1+i\right)y+\left(1+3i\right)\left(-2-2i\right)z=\left(1+3i\right)\left(-10\right),\left(1+i\right)\left(1+3i\right)y+\left(1+i\right)\left(-1+i\right)z=\left(1+i\right)\left(30-10i\right)
To make \left(1+i\right)y and \left(1+3i\right)y equal, multiply all terms on each side of the first equation by 1+3i and all terms on each side of the second by 1+i.
\left(-2+4i\right)y+\left(4-8i\right)z=-10-30i,\left(-2+4i\right)y-2z=40+20i
Simplify.
\left(-2+4i\right)y+\left(2-4i\right)y+\left(4-8i\right)z+2z=-10-30i+\left(-40-20i\right)
Subtract \left(-2+4i\right)y-2z=40+20i from \left(-2+4i\right)y+\left(4-8i\right)z=-10-30i by subtracting like terms on each side of the equal sign.
\left(4-8i\right)z+2z=-10-30i+\left(-40-20i\right)
Add \left(-2+4i\right)y to \left(2-4i\right)y. Terms \left(-2+4i\right)y and \left(2-4i\right)y cancel out, leaving an equation with only one variable that can be solved.
\left(6-8i\right)z=-10-30i+\left(-40-20i\right)
Add \left(4-8i\right)z to 2z.
\left(6-8i\right)z=-50-50i
Add -10-30i to -40-20i.
z=1-7i
Divide both sides by 6-8i.
\left(1+3i\right)y+\left(-1+i\right)\left(1-7i\right)=30-10i
Substitute 1-7i for z in \left(1+3i\right)y+\left(-1+i\right)z=30-10i. Because the resulting equation contains only one variable, you can solve for y directly.
\left(1+3i\right)y+\left(6+8i\right)=30-10i
Multiply -1+i times 1-7i.
\left(1+3i\right)y=24-18i
Subtract 6+8i from both sides of the equation.
y=-3-9i
Divide both sides by 1+3i.
y=-3-9i,z=1-7i
The system is now solved.