Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

17x_{1}-10x_{2}-2x_{3}=250 -4x_{1}+9x_{2}-x_{3}=80 -4x_{1}-5x_{2}+49x_{3}=400
Multiply each equation by the least common multiple of denominators in it. Simplify.
-4x_{1}+9x_{2}-x_{3}=80 17x_{1}-10x_{2}-2x_{3}=250 -4x_{1}-5x_{2}+49x_{3}=400
Reorder the equations.
x_{3}=-4x_{1}+9x_{2}-80
Solve -4x_{1}+9x_{2}-x_{3}=80 for x_{3}.
17x_{1}-10x_{2}-2\left(-4x_{1}+9x_{2}-80\right)=250 -4x_{1}-5x_{2}+49\left(-4x_{1}+9x_{2}-80\right)=400
Substitute -4x_{1}+9x_{2}-80 for x_{3} in the second and third equation.
x_{2}=-\frac{45}{14}+\frac{25}{28}x_{1} x_{1}=-\frac{108}{5}+\frac{109}{50}x_{2}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=-\frac{108}{5}+\frac{109}{50}\left(-\frac{45}{14}+\frac{25}{28}x_{1}\right)
Substitute -\frac{45}{14}+\frac{25}{28}x_{1} for x_{2} in the equation x_{1}=-\frac{108}{5}+\frac{109}{50}x_{2}.
x_{1}=\frac{1602}{53}
Solve x_{1}=-\frac{108}{5}+\frac{109}{50}\left(-\frac{45}{14}+\frac{25}{28}x_{1}\right) for x_{1}.
x_{2}=-\frac{45}{14}+\frac{25}{28}\times \frac{1602}{53}
Substitute \frac{1602}{53} for x_{1} in the equation x_{2}=-\frac{45}{14}+\frac{25}{28}x_{1}.
x_{2}=\frac{1260}{53}
Calculate x_{2} from x_{2}=-\frac{45}{14}+\frac{25}{28}\times \frac{1602}{53}.
x_{3}=-4\times \frac{1602}{53}+9\times \frac{1260}{53}-80
Substitute \frac{1260}{53} for x_{2} and \frac{1602}{53} for x_{1} in the equation x_{3}=-4x_{1}+9x_{2}-80.
x_{3}=\frac{692}{53}
Calculate x_{3} from x_{3}=-4\times \frac{1602}{53}+9\times \frac{1260}{53}-80.
x_{1}=\frac{1602}{53} x_{2}=\frac{1260}{53} x_{3}=\frac{692}{53}
The system is now solved.