\left\{ \begin{array} { l } { ( \frac { 1 } { 20 } + \frac { 1 } { 10 } + \frac { 1 } { 50 } ) x _ { 1 } - \frac { 1 } { 10 } x _ { 2 } - \frac { 1 } { 50 } x _ { 3 } = \frac { 50 } { 20 } } \\ { - \frac { 1 } { 10 } x _ { 1 } + ( \frac { 1 } { 10 } + \frac { 1 } { 10 } + \frac { 1 } { 40 } ) x _ { 2 } - \frac { 1 } { 40 } x _ { 3 } = \frac { 20 } { 10 } } \\ { - \frac { 1 } { 50 } x _ { 1 } - \frac { 1 } { 40 } x _ { 2 } + ( \frac { 1 } { 5 } + \frac { 1 } { 40 } + \frac { 1 } { 50 } ) x _ { 3 } = \frac { 10 } { 5 } } \end{array} \right.
Solve for x_1, x_2, x_3
x_{1} = \frac{1602}{53} = 30\frac{12}{53} \approx 30.226415094
x_{2} = \frac{1260}{53} = 23\frac{41}{53} \approx 23.773584906
x_{3} = \frac{692}{53} = 13\frac{3}{53} \approx 13.056603774
Share
Copied to clipboard
17x_{1}-10x_{2}-2x_{3}=250 -4x_{1}+9x_{2}-x_{3}=80 -4x_{1}-5x_{2}+49x_{3}=400
Multiply each equation by the least common multiple of denominators in it. Simplify.
-4x_{1}+9x_{2}-x_{3}=80 17x_{1}-10x_{2}-2x_{3}=250 -4x_{1}-5x_{2}+49x_{3}=400
Reorder the equations.
x_{3}=-4x_{1}+9x_{2}-80
Solve -4x_{1}+9x_{2}-x_{3}=80 for x_{3}.
17x_{1}-10x_{2}-2\left(-4x_{1}+9x_{2}-80\right)=250 -4x_{1}-5x_{2}+49\left(-4x_{1}+9x_{2}-80\right)=400
Substitute -4x_{1}+9x_{2}-80 for x_{3} in the second and third equation.
x_{2}=-\frac{45}{14}+\frac{25}{28}x_{1} x_{1}=-\frac{108}{5}+\frac{109}{50}x_{2}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=-\frac{108}{5}+\frac{109}{50}\left(-\frac{45}{14}+\frac{25}{28}x_{1}\right)
Substitute -\frac{45}{14}+\frac{25}{28}x_{1} for x_{2} in the equation x_{1}=-\frac{108}{5}+\frac{109}{50}x_{2}.
x_{1}=\frac{1602}{53}
Solve x_{1}=-\frac{108}{5}+\frac{109}{50}\left(-\frac{45}{14}+\frac{25}{28}x_{1}\right) for x_{1}.
x_{2}=-\frac{45}{14}+\frac{25}{28}\times \frac{1602}{53}
Substitute \frac{1602}{53} for x_{1} in the equation x_{2}=-\frac{45}{14}+\frac{25}{28}x_{1}.
x_{2}=\frac{1260}{53}
Calculate x_{2} from x_{2}=-\frac{45}{14}+\frac{25}{28}\times \frac{1602}{53}.
x_{3}=-4\times \frac{1602}{53}+9\times \frac{1260}{53}-80
Substitute \frac{1260}{53} for x_{2} and \frac{1602}{53} for x_{1} in the equation x_{3}=-4x_{1}+9x_{2}-80.
x_{3}=\frac{692}{53}
Calculate x_{3} from x_{3}=-4\times \frac{1602}{53}+9\times \frac{1260}{53}-80.
x_{1}=\frac{1602}{53} x_{2}=\frac{1260}{53} x_{3}=\frac{692}{53}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}