\left\{ \begin{array} { l } { \frac { y } { 8 } = \frac { x } { 10 } } \\ { \frac { 373 x } { 1000 } = 17 + y } \end{array} \right.
Solve for y, x
x = -\frac{17000}{427} = -39\frac{347}{427} \approx -39.81264637
y = -\frac{13600}{427} = -31\frac{363}{427} \approx -31.850117096
Graph
Share
Copied to clipboard
5y=4x
Consider the first equation. Multiply both sides of the equation by 40, the least common multiple of 8,10.
y=\frac{1}{5}\times 4x
Divide both sides by 5.
y=\frac{4}{5}x
Multiply \frac{1}{5} times 4x.
-1000\times \frac{4}{5}x+373x=17000
Substitute \frac{4x}{5} for y in the other equation, -1000y+373x=17000.
-800x+373x=17000
Multiply -1000 times \frac{4x}{5}.
-427x=17000
Add -800x to 373x.
x=-\frac{17000}{427}
Divide both sides by -427.
y=\frac{4}{5}\left(-\frac{17000}{427}\right)
Substitute -\frac{17000}{427} for x in y=\frac{4}{5}x. Because the resulting equation contains only one variable, you can solve for y directly.
y=-\frac{13600}{427}
Multiply \frac{4}{5} times -\frac{17000}{427} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=-\frac{13600}{427},x=-\frac{17000}{427}
The system is now solved.
5y=4x
Consider the first equation. Multiply both sides of the equation by 40, the least common multiple of 8,10.
5y-4x=0
Subtract 4x from both sides.
373x=17000+1000y
Consider the second equation. Multiply both sides of the equation by 1000.
373x-1000y=17000
Subtract 1000y from both sides.
5y-4x=0,-1000y+373x=17000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-4\\-1000&373\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\17000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-4\\-1000&373\end{matrix}\right))\left(\begin{matrix}5&-4\\-1000&373\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1000&373\end{matrix}\right))\left(\begin{matrix}0\\17000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-4\\-1000&373\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1000&373\end{matrix}\right))\left(\begin{matrix}0\\17000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1000&373\end{matrix}\right))\left(\begin{matrix}0\\17000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{373}{5\times 373-\left(-4\left(-1000\right)\right)}&-\frac{-4}{5\times 373-\left(-4\left(-1000\right)\right)}\\-\frac{-1000}{5\times 373-\left(-4\left(-1000\right)\right)}&\frac{5}{5\times 373-\left(-4\left(-1000\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\17000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{373}{2135}&-\frac{4}{2135}\\-\frac{200}{427}&-\frac{1}{427}\end{matrix}\right)\left(\begin{matrix}0\\17000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2135}\times 17000\\-\frac{1}{427}\times 17000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{13600}{427}\\-\frac{17000}{427}\end{matrix}\right)
Do the arithmetic.
y=-\frac{13600}{427},x=-\frac{17000}{427}
Extract the matrix elements y and x.
5y=4x
Consider the first equation. Multiply both sides of the equation by 40, the least common multiple of 8,10.
5y-4x=0
Subtract 4x from both sides.
373x=17000+1000y
Consider the second equation. Multiply both sides of the equation by 1000.
373x-1000y=17000
Subtract 1000y from both sides.
5y-4x=0,-1000y+373x=17000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-1000\times 5y-1000\left(-4\right)x=0,5\left(-1000\right)y+5\times 373x=5\times 17000
To make 5y and -1000y equal, multiply all terms on each side of the first equation by -1000 and all terms on each side of the second by 5.
-5000y+4000x=0,-5000y+1865x=85000
Simplify.
-5000y+5000y+4000x-1865x=-85000
Subtract -5000y+1865x=85000 from -5000y+4000x=0 by subtracting like terms on each side of the equal sign.
4000x-1865x=-85000
Add -5000y to 5000y. Terms -5000y and 5000y cancel out, leaving an equation with only one variable that can be solved.
2135x=-85000
Add 4000x to -1865x.
x=-\frac{17000}{427}
Divide both sides by 2135.
-1000y+373\left(-\frac{17000}{427}\right)=17000
Substitute -\frac{17000}{427} for x in -1000y+373x=17000. Because the resulting equation contains only one variable, you can solve for y directly.
-1000y-\frac{6341000}{427}=17000
Multiply 373 times -\frac{17000}{427}.
-1000y=\frac{13600000}{427}
Add \frac{6341000}{427} to both sides of the equation.
y=-\frac{13600}{427}
Divide both sides by -1000.
y=-\frac{13600}{427},x=-\frac{17000}{427}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}