\left\{ \begin{array} { l } { \frac { x _ { 1 } } { 4 } + \frac { x _ { 1 } - 3 } { 2 } - \frac { 1 } { 2 } x _ { 1 } = 0 } \\ { \frac { x _ { 3 } - 3 } { 2 } + \frac { x _ { 3 } } { 4 } + \frac { 1 } { 2 } x _ { 1 } = 0 } \end{array} \right.
Solve for x_1, x_3
x_{1}=6
x_{3}=-2
Share
Copied to clipboard
x_{1}+2\left(x_{1}-3\right)-2x_{1}=0
Consider the first equation. Multiply both sides of the equation by 4, the least common multiple of 4,2.
x_{1}+2x_{1}-6-2x_{1}=0
Use the distributive property to multiply 2 by x_{1}-3.
3x_{1}-6-2x_{1}=0
Combine x_{1} and 2x_{1} to get 3x_{1}.
x_{1}-6=0
Combine 3x_{1} and -2x_{1} to get x_{1}.
x_{1}=6
Add 6 to both sides. Anything plus zero gives itself.
\frac{x_{3}-3}{2}+\frac{x_{3}}{4}+\frac{1}{2}\times 6=0
Consider the second equation. Insert the known values of variables into the equation.
2\left(x_{3}-3\right)+x_{3}+2\times 6=0
Multiply both sides of the equation by 4, the least common multiple of 2,4.
2x_{3}-6+x_{3}+2\times 6=0
Use the distributive property to multiply 2 by x_{3}-3.
3x_{3}-6+2\times 6=0
Combine 2x_{3} and x_{3} to get 3x_{3}.
3x_{3}-6+12=0
Multiply 2 and 6 to get 12.
3x_{3}+6=0
Add -6 and 12 to get 6.
3x_{3}=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
x_{3}=\frac{-6}{3}
Divide both sides by 3.
x_{3}=-2
Divide -6 by 3 to get -2.
x_{1}=6 x_{3}=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}