Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12},6x-y=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
Multiply \frac{1}{4} times x-1.
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}y+\frac{1}{2}=\frac{5}{12}
Multiply \frac{1}{4} times y+2.
\frac{1}{4}x+\frac{1}{4}y+\frac{1}{4}=\frac{5}{12}
Add -\frac{1}{4} to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{1}{4}x+\frac{1}{4}y=\frac{1}{6}
Subtract \frac{1}{4} from both sides of the equation.
\frac{1}{4}x=-\frac{1}{4}y+\frac{1}{6}
Subtract \frac{y}{4} from both sides of the equation.
x=4\left(-\frac{1}{4}y+\frac{1}{6}\right)
Multiply both sides by 4.
x=-y+\frac{2}{3}
Multiply 4 times -\frac{y}{4}+\frac{1}{6}.
6\left(-y+\frac{2}{3}\right)-y=1
Substitute -y+\frac{2}{3} for x in the other equation, 6x-y=1.
-6y+4-y=1
Multiply 6 times -y+\frac{2}{3}.
-7y+4=1
Add -6y to -y.
-7y=-3
Subtract 4 from both sides of the equation.
y=\frac{3}{7}
Divide both sides by -7.
x=-\frac{3}{7}+\frac{2}{3}
Substitute \frac{3}{7} for y in x=-y+\frac{2}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{5}{21}
Add \frac{2}{3} to -\frac{3}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{5}{21},y=\frac{3}{7}
The system is now solved.
\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12},6x-y=1
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
Simplify the first equation to put it in standard form.
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
Multiply \frac{1}{4} times x-1.
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}y+\frac{1}{2}=\frac{5}{12}
Multiply \frac{1}{4} times y+2.
\frac{1}{4}x+\frac{1}{4}y+\frac{1}{4}=\frac{5}{12}
Add -\frac{1}{4} to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{1}{4}x+\frac{1}{4}y=\frac{1}{6}
Subtract \frac{1}{4} from both sides of the equation.
\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}&-\frac{\frac{1}{4}}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}\\-\frac{6}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}&\frac{\frac{1}{4}}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}\end{matrix}\right)\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&\frac{1}{7}\\\frac{24}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\times \frac{1}{6}+\frac{1}{7}\\\frac{24}{7}\times \frac{1}{6}-\frac{1}{7}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\\\frac{3}{7}\end{matrix}\right)
Do the arithmetic.
x=\frac{5}{21},y=\frac{3}{7}
Extract the matrix elements x and y.