Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(x-1\right)=3\left(2y+3\right)
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
4x-4=3\left(2y+3\right)
Use the distributive property to multiply 4 by x-1.
4x-4=6y+9
Use the distributive property to multiply 3 by 2y+3.
4x-4-6y=9
Subtract 6y from both sides.
4x-6y=9+4
Add 4 to both sides.
4x-6y=13
Add 9 and 4 to get 13.
4x-6y=13,4x-3y=7
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x-6y=13
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=6y+13
Add 6y to both sides of the equation.
x=\frac{1}{4}\left(6y+13\right)
Divide both sides by 4.
x=\frac{3}{2}y+\frac{13}{4}
Multiply \frac{1}{4} times 6y+13.
4\left(\frac{3}{2}y+\frac{13}{4}\right)-3y=7
Substitute \frac{3y}{2}+\frac{13}{4} for x in the other equation, 4x-3y=7.
6y+13-3y=7
Multiply 4 times \frac{3y}{2}+\frac{13}{4}.
3y+13=7
Add 6y to -3y.
3y=-6
Subtract 13 from both sides of the equation.
y=-2
Divide both sides by 3.
x=\frac{3}{2}\left(-2\right)+\frac{13}{4}
Substitute -2 for y in x=\frac{3}{2}y+\frac{13}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-3+\frac{13}{4}
Multiply \frac{3}{2} times -2.
x=\frac{1}{4}
Add \frac{13}{4} to -3.
x=\frac{1}{4},y=-2
The system is now solved.
4\left(x-1\right)=3\left(2y+3\right)
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
4x-4=3\left(2y+3\right)
Use the distributive property to multiply 4 by x-1.
4x-4=6y+9
Use the distributive property to multiply 3 by 2y+3.
4x-4-6y=9
Subtract 6y from both sides.
4x-6y=9+4
Add 4 to both sides.
4x-6y=13
Add 9 and 4 to get 13.
4x-6y=13,4x-3y=7
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&-6\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\7\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}4&-6\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}13\\7\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&-6\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}13\\7\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}13\\7\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4\left(-3\right)-\left(-6\times 4\right)}&-\frac{-6}{4\left(-3\right)-\left(-6\times 4\right)}\\-\frac{4}{4\left(-3\right)-\left(-6\times 4\right)}&\frac{4}{4\left(-3\right)-\left(-6\times 4\right)}\end{matrix}\right)\left(\begin{matrix}13\\7\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{2}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}13\\7\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 13+\frac{1}{2}\times 7\\-\frac{1}{3}\times 13+\frac{1}{3}\times 7\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\-2\end{matrix}\right)
Do the arithmetic.
x=\frac{1}{4},y=-2
Extract the matrix elements x and y.
4\left(x-1\right)=3\left(2y+3\right)
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
4x-4=3\left(2y+3\right)
Use the distributive property to multiply 4 by x-1.
4x-4=6y+9
Use the distributive property to multiply 3 by 2y+3.
4x-4-6y=9
Subtract 6y from both sides.
4x-6y=9+4
Add 4 to both sides.
4x-6y=13
Add 9 and 4 to get 13.
4x-6y=13,4x-3y=7
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x-4x-6y+3y=13-7
Subtract 4x-3y=7 from 4x-6y=13 by subtracting like terms on each side of the equal sign.
-6y+3y=13-7
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
-3y=13-7
Add -6y to 3y.
-3y=6
Add 13 to -7.
y=-2
Divide both sides by -3.
4x-3\left(-2\right)=7
Substitute -2 for y in 4x-3y=7. Because the resulting equation contains only one variable, you can solve for x directly.
4x+6=7
Multiply -3 times -2.
4x=1
Subtract 6 from both sides of the equation.
x=\frac{1}{4}
Divide both sides by 4.
x=\frac{1}{4},y=-2
The system is now solved.