\left\{ \begin{array} { l } { \frac { x - 1 } { 3 } + \frac { y - 1 } { 2 } = 2 } \\ { \frac { 2 x - 1 } { 3 } + \frac { 1 - y } { 2 } = 1 } \end{array} \right.
Solve for x, y
x = \frac{11}{3} = 3\frac{2}{3} \approx 3.666666667
y = \frac{29}{9} = 3\frac{2}{9} \approx 3.222222222
Graph
Share
Copied to clipboard
\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y-1\right)=2,\frac{1}{3}\left(2x-1\right)+\frac{1}{2}\left(-y+1\right)=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y-1\right)=2
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}\left(y-1\right)=2
Multiply \frac{1}{3} times x-1.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}y-\frac{1}{2}=2
Multiply \frac{1}{2} times y-1.
\frac{1}{3}x+\frac{1}{2}y-\frac{5}{6}=2
Add -\frac{1}{3} to -\frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{1}{3}x+\frac{1}{2}y=\frac{17}{6}
Add \frac{5}{6} to both sides of the equation.
\frac{1}{3}x=-\frac{1}{2}y+\frac{17}{6}
Subtract \frac{y}{2} from both sides of the equation.
x=3\left(-\frac{1}{2}y+\frac{17}{6}\right)
Multiply both sides by 3.
x=-\frac{3}{2}y+\frac{17}{2}
Multiply 3 times -\frac{y}{2}+\frac{17}{6}.
\frac{1}{3}\left(2\left(-\frac{3}{2}y+\frac{17}{2}\right)-1\right)+\frac{1}{2}\left(-y+1\right)=1
Substitute \frac{-3y+17}{2} for x in the other equation, \frac{1}{3}\left(2x-1\right)+\frac{1}{2}\left(-y+1\right)=1.
\frac{1}{3}\left(-3y+17-1\right)+\frac{1}{2}\left(-y+1\right)=1
Multiply 2 times \frac{-3y+17}{2}.
\frac{1}{3}\left(-3y+16\right)+\frac{1}{2}\left(-y+1\right)=1
Add 17 to -1.
-y+\frac{16}{3}+\frac{1}{2}\left(-y+1\right)=1
Multiply \frac{1}{3} times -3y+16.
-y+\frac{16}{3}-\frac{1}{2}y+\frac{1}{2}=1
Multiply \frac{1}{2} times -y+1.
-\frac{3}{2}y+\frac{16}{3}+\frac{1}{2}=1
Add -y to -\frac{y}{2}.
-\frac{3}{2}y+\frac{35}{6}=1
Add \frac{16}{3} to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-\frac{3}{2}y=-\frac{29}{6}
Subtract \frac{35}{6} from both sides of the equation.
y=\frac{29}{9}
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{2}\times \frac{29}{9}+\frac{17}{2}
Substitute \frac{29}{9} for y in x=-\frac{3}{2}y+\frac{17}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{29}{6}+\frac{17}{2}
Multiply -\frac{3}{2} times \frac{29}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{11}{3}
Add \frac{17}{2} to -\frac{29}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{11}{3},y=\frac{29}{9}
The system is now solved.
\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y-1\right)=2,\frac{1}{3}\left(2x-1\right)+\frac{1}{2}\left(-y+1\right)=1
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y-1\right)=2
Simplify the first equation to put it in standard form.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}\left(y-1\right)=2
Multiply \frac{1}{3} times x-1.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}y-\frac{1}{2}=2
Multiply \frac{1}{2} times y-1.
\frac{1}{3}x+\frac{1}{2}y-\frac{5}{6}=2
Add -\frac{1}{3} to -\frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{1}{3}x+\frac{1}{2}y=\frac{17}{6}
Add \frac{5}{6} to both sides of the equation.
\frac{1}{3}\left(2x-1\right)+\frac{1}{2}\left(-y+1\right)=1
Simplify the second equation to put it in standard form.
\frac{2}{3}x-\frac{1}{3}+\frac{1}{2}\left(-y+1\right)=1
Multiply \frac{1}{3} times 2x-1.
\frac{2}{3}x-\frac{1}{3}-\frac{1}{2}y+\frac{1}{2}=1
Multiply \frac{1}{2} times -y+1.
\frac{2}{3}x-\frac{1}{2}y+\frac{1}{6}=1
Add -\frac{1}{3} to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{2}{3}x-\frac{1}{2}y=\frac{5}{6}
Subtract \frac{1}{6} from both sides of the equation.
\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{2}{3}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{6}\\\frac{5}{6}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{2}{3}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{2}{3}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{2}{3}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{17}{6}\\\frac{5}{6}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{2}{3}&-\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{2}{3}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{17}{6}\\\frac{5}{6}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{2}{3}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{17}{6}\\\frac{5}{6}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{2}}{\frac{1}{3}\left(-\frac{1}{2}\right)-\frac{1}{2}\times \frac{2}{3}}&-\frac{\frac{1}{2}}{\frac{1}{3}\left(-\frac{1}{2}\right)-\frac{1}{2}\times \frac{2}{3}}\\-\frac{\frac{2}{3}}{\frac{1}{3}\left(-\frac{1}{2}\right)-\frac{1}{2}\times \frac{2}{3}}&\frac{\frac{1}{3}}{\frac{1}{3}\left(-\frac{1}{2}\right)-\frac{1}{2}\times \frac{2}{3}}\end{matrix}\right)\left(\begin{matrix}\frac{17}{6}\\\frac{5}{6}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\\frac{4}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}\frac{17}{6}\\\frac{5}{6}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17+5}{6}\\\frac{4}{3}\times \frac{17}{6}-\frac{2}{3}\times \frac{5}{6}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{3}\\\frac{29}{9}\end{matrix}\right)
Do the arithmetic.
x=\frac{11}{3},y=\frac{29}{9}
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}