\left\{ \begin{array} { l } { \frac { x } { y } = 13,53 } \\ { x + y = 13,83 } \end{array} \right.
Solve for x, y
x=\frac{1871199}{145300}\approx 12,878176187
y=\frac{1383}{1453}\approx 0,951823813
Graph
Share
Copied to clipboard
x=13,53y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
13,53y+y=13,83
Substitute \frac{1353y}{100} for x in the other equation, x+y=13,83.
14,53y=13,83
Add \frac{1353y}{100} to y.
y=\frac{1383}{1453}
Divide both sides of the equation by 14,53, which is the same as multiplying both sides by the reciprocal of the fraction.
x=13,53\times \frac{1383}{1453}
Substitute \frac{1383}{1453} for y in x=13,53y. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1871199}{145300}
Multiply 13,53 times \frac{1383}{1453} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1871199}{145300};y=\frac{1383}{1453}
The system is now solved.
x=13,53y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
x-13,53y=0
Subtract 13,53y from both sides.
x-13,53y=0;x+y=13,83
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-13,53\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\13,83\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-13,53\\1&1\end{matrix}\right))\left(\begin{matrix}1&-13,53\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-13,53\\1&1\end{matrix}\right))\left(\begin{matrix}0\\13,83\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-13,53\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-13,53\\1&1\end{matrix}\right))\left(\begin{matrix}0\\13,83\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-13,53\\1&1\end{matrix}\right))\left(\begin{matrix}0\\13,83\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-13,53\right)}&-\frac{-13,53}{1-\left(-13,53\right)}\\-\frac{1}{1-\left(-13,53\right)}&\frac{1}{1-\left(-13,53\right)}\end{matrix}\right)\left(\begin{matrix}0\\13,83\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{100}{1453}&\frac{1353}{1453}\\-\frac{100}{1453}&\frac{100}{1453}\end{matrix}\right)\left(\begin{matrix}0\\13,83\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1353}{1453}\times 13,83\\\frac{100}{1453}\times 13,83\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1871199}{145300}\\\frac{1383}{1453}\end{matrix}\right)
Do the arithmetic.
x=\frac{1871199}{145300};y=\frac{1383}{1453}
Extract the matrix elements x and y.
x=13,53y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
x-13,53y=0
Subtract 13,53y from both sides.
x-13,53y=0;x+y=13,83
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-13,53y-y=-13,83
Subtract x+y=13,83 from x-13,53y=0 by subtracting like terms on each side of the equal sign.
-13,53y-y=-13,83
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-14,53y=-13,83
Add -\frac{1353y}{100} to -y.
y=\frac{1383}{1453}
Divide both sides of the equation by -14,53, which is the same as multiplying both sides by the reciprocal of the fraction.
x+\frac{1383}{1453}=13,83
Substitute \frac{1383}{1453} for y in x+y=13,83. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1871199}{145300}
Subtract \frac{1383}{1453} from both sides of the equation.
x=\frac{1871199}{145300};y=\frac{1383}{1453}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}