Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=-8y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
-y^{2}+\left(-8y\right)^{2}=40
Substitute -8y for x in the other equation, -y^{2}+x^{2}=40.
-y^{2}+64y^{2}=40
Square -8y.
63y^{2}=40
Add -y^{2} to 64y^{2}.
63y^{2}-40=0
Subtract 40 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times 63\left(-40\right)}}{2\times 63}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+1\left(-8\right)^{2} for a, 1\times 0\left(-8\right)\times 2 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 63\left(-40\right)}}{2\times 63}
Square 1\times 0\left(-8\right)\times 2.
y=\frac{0±\sqrt{-252\left(-40\right)}}{2\times 63}
Multiply -4 times -1+1\left(-8\right)^{2}.
y=\frac{0±\sqrt{10080}}{2\times 63}
Multiply -252 times -40.
y=\frac{0±12\sqrt{70}}{2\times 63}
Take the square root of 10080.
y=\frac{0±12\sqrt{70}}{126}
Multiply 2 times -1+1\left(-8\right)^{2}.
y=\frac{2\sqrt{70}}{21}
Now solve the equation y=\frac{0±12\sqrt{70}}{126} when ± is plus.
y=-\frac{2\sqrt{70}}{21}
Now solve the equation y=\frac{0±12\sqrt{70}}{126} when ± is minus.
x=-8\times \frac{2\sqrt{70}}{21}
There are two solutions for y: \frac{2\sqrt{70}}{21} and -\frac{2\sqrt{70}}{21}. Substitute \frac{2\sqrt{70}}{21} for y in the equation x=-8y to find the corresponding solution for x that satisfies both equations.
x=-8\left(-\frac{2\sqrt{70}}{21}\right)
Now substitute -\frac{2\sqrt{70}}{21} for y in the equation x=-8y and solve to find the corresponding solution for x that satisfies both equations.
x=-8\times \frac{2\sqrt{70}}{21},y=\frac{2\sqrt{70}}{21}\text{ or }x=-8\left(-\frac{2\sqrt{70}}{21}\right),y=-\frac{2\sqrt{70}}{21}
The system is now solved.