\left\{ \begin{array} { l } { \frac { x } { y } = - 8 } \\ { x ^ { 2 } - y ^ { 2 } = 40 } \end{array} \right.
Solve for x, y
x=\frac{16\sqrt{70}}{21}\approx 6.374552583\text{, }y=-\frac{2\sqrt{70}}{21}\approx -0.796819073
x=-\frac{16\sqrt{70}}{21}\approx -6.374552583\text{, }y=\frac{2\sqrt{70}}{21}\approx 0.796819073
Graph
Share
Copied to clipboard
x=-8y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
-y^{2}+\left(-8y\right)^{2}=40
Substitute -8y for x in the other equation, -y^{2}+x^{2}=40.
-y^{2}+64y^{2}=40
Square -8y.
63y^{2}=40
Add -y^{2} to 64y^{2}.
63y^{2}-40=0
Subtract 40 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times 63\left(-40\right)}}{2\times 63}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+1\left(-8\right)^{2} for a, 1\times 0\left(-8\right)\times 2 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 63\left(-40\right)}}{2\times 63}
Square 1\times 0\left(-8\right)\times 2.
y=\frac{0±\sqrt{-252\left(-40\right)}}{2\times 63}
Multiply -4 times -1+1\left(-8\right)^{2}.
y=\frac{0±\sqrt{10080}}{2\times 63}
Multiply -252 times -40.
y=\frac{0±12\sqrt{70}}{2\times 63}
Take the square root of 10080.
y=\frac{0±12\sqrt{70}}{126}
Multiply 2 times -1+1\left(-8\right)^{2}.
y=\frac{2\sqrt{70}}{21}
Now solve the equation y=\frac{0±12\sqrt{70}}{126} when ± is plus.
y=-\frac{2\sqrt{70}}{21}
Now solve the equation y=\frac{0±12\sqrt{70}}{126} when ± is minus.
x=-8\times \frac{2\sqrt{70}}{21}
There are two solutions for y: \frac{2\sqrt{70}}{21} and -\frac{2\sqrt{70}}{21}. Substitute \frac{2\sqrt{70}}{21} for y in the equation x=-8y to find the corresponding solution for x that satisfies both equations.
x=-8\left(-\frac{2\sqrt{70}}{21}\right)
Now substitute -\frac{2\sqrt{70}}{21} for y in the equation x=-8y and solve to find the corresponding solution for x that satisfies both equations.
x=-8\times \frac{2\sqrt{70}}{21},y=\frac{2\sqrt{70}}{21}\text{ or }x=-8\left(-\frac{2\sqrt{70}}{21}\right),y=-\frac{2\sqrt{70}}{21}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}