\left\{ \begin{array} { l } { \frac { x } { y } = \frac { 4 } { 3 } } \\ { x = 2 ( y - 12 ) } \end{array} \right.
Solve for x, y
x=48
y=36
Graph
Share
Copied to clipboard
3x=4y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3y, the least common multiple of y,3.
x=\frac{1}{3}\times 4y
Divide both sides by 3.
x=\frac{4}{3}y
Multiply \frac{1}{3} times 4y.
\frac{4}{3}y-2y=-24
Substitute \frac{4y}{3} for x in the other equation, x-2y=-24.
-\frac{2}{3}y=-24
Add \frac{4y}{3} to -2y.
y=36
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{4}{3}\times 36
Substitute 36 for y in x=\frac{4}{3}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=48
Multiply \frac{4}{3} times 36.
x=48,y=36
The system is now solved.
3x=4y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3y, the least common multiple of y,3.
3x-4y=0
Subtract 4y from both sides.
x=2y-24
Consider the second equation. Use the distributive property to multiply 2 by y-12.
x-2y=-24
Subtract 2y from both sides.
3x-4y=0,x-2y=-24
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-4\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-24\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}3&-4\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\-24\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-4\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\-24\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\-24\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-4\right)}&-\frac{-4}{3\left(-2\right)-\left(-4\right)}\\-\frac{1}{3\left(-2\right)-\left(-4\right)}&\frac{3}{3\left(-2\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}0\\-24\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-2\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}0\\-24\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-24\right)\\-\frac{3}{2}\left(-24\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}48\\36\end{matrix}\right)
Do the arithmetic.
x=48,y=36
Extract the matrix elements x and y.
3x=4y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3y, the least common multiple of y,3.
3x-4y=0
Subtract 4y from both sides.
x=2y-24
Consider the second equation. Use the distributive property to multiply 2 by y-12.
x-2y=-24
Subtract 2y from both sides.
3x-4y=0,x-2y=-24
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x-4y=0,3x+3\left(-2\right)y=3\left(-24\right)
To make 3x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 3.
3x-4y=0,3x-6y=-72
Simplify.
3x-3x-4y+6y=72
Subtract 3x-6y=-72 from 3x-4y=0 by subtracting like terms on each side of the equal sign.
-4y+6y=72
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
2y=72
Add -4y to 6y.
y=36
Divide both sides by 2.
x-2\times 36=-24
Substitute 36 for y in x-2y=-24. Because the resulting equation contains only one variable, you can solve for x directly.
x-72=-24
Multiply -2 times 36.
x=48
Add 72 to both sides of the equation.
x=48,y=36
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}