\left\{ \begin{array} { l } { \frac { x } { y } = \frac { 3 - \sqrt { 3 } } { 3 } } \\ { x + y = \sqrt { 3 } } \end{array} \right.
Solve for x, y
x=\frac{5\sqrt{3}-3}{11}\approx 0.514568549
y = \frac{6 \sqrt{3} + 3}{11} \approx 1.217482259
Graph
Share
Copied to clipboard
3x=y\left(3-\sqrt{3}\right)
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3y, the least common multiple of y,3.
3x=3y-y\sqrt{3}
Use the distributive property to multiply y by 3-\sqrt{3}.
3x-3y=-y\sqrt{3}
Subtract 3y from both sides.
3x-3y+y\sqrt{3}=0
Add y\sqrt{3} to both sides.
3x+\left(-3+\sqrt{3}\right)y=0
Combine all terms containing x,y.
3x+\left(\sqrt{3}-3\right)y=0,x+y=\sqrt{3}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+\left(\sqrt{3}-3\right)y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=\left(3-\sqrt{3}\right)y
Subtract \left(-3+\sqrt{3}\right)y from both sides of the equation.
x=\frac{1}{3}\left(3-\sqrt{3}\right)y
Divide both sides by 3.
x=\left(-\frac{\sqrt{3}}{3}+1\right)y
Multiply \frac{1}{3} times 3y-y\sqrt{3}.
\left(-\frac{\sqrt{3}}{3}+1\right)y+y=\sqrt{3}
Substitute y-\frac{y\sqrt{3}}{3} for x in the other equation, x+y=\sqrt{3}.
\left(-\frac{\sqrt{3}}{3}+2\right)y=\sqrt{3}
Add y-\frac{y\sqrt{3}}{3} to y.
y=\frac{6\sqrt{3}+3}{11}
Divide both sides by 2-\frac{\sqrt{3}}{3}.
x=\left(-\frac{\sqrt{3}}{3}+1\right)\times \frac{6\sqrt{3}+3}{11}
Substitute \frac{3+6\sqrt{3}}{11} for y in x=\left(-\frac{\sqrt{3}}{3}+1\right)y. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{5\sqrt{3}-3}{11}
Multiply 1-\frac{\sqrt{3}}{3} times \frac{3+6\sqrt{3}}{11}.
x=\frac{5\sqrt{3}-3}{11},y=\frac{6\sqrt{3}+3}{11}
The system is now solved.
3x=y\left(3-\sqrt{3}\right)
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3y, the least common multiple of y,3.
3x=3y-y\sqrt{3}
Use the distributive property to multiply y by 3-\sqrt{3}.
3x-3y=-y\sqrt{3}
Subtract 3y from both sides.
3x-3y+y\sqrt{3}=0
Add y\sqrt{3} to both sides.
3x+\left(-3+\sqrt{3}\right)y=0
Combine all terms containing x,y.
3x+\left(\sqrt{3}-3\right)y=0,x+y=\sqrt{3}
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x+\left(\sqrt{3}-3\right)y=0,3x+3y=3\sqrt{3}
To make 3x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 3.
3x-3x+\left(\sqrt{3}-3\right)y-3y=-3\sqrt{3}
Subtract 3x+3y=3\sqrt{3} from 3x+\left(\sqrt{3}-3\right)y=0 by subtracting like terms on each side of the equal sign.
\left(\sqrt{3}-3\right)y-3y=-3\sqrt{3}
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
\left(\sqrt{3}-6\right)y=-3\sqrt{3}
Add \left(-3+\sqrt{3}\right)y to -3y.
y=\frac{6\sqrt{3}+3}{11}
Divide both sides by -6+\sqrt{3}.
x+\frac{6\sqrt{3}+3}{11}=\sqrt{3}
Substitute \frac{3+6\sqrt{3}}{11} for y in x+y=\sqrt{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{5\sqrt{3}-3}{11}
Subtract \frac{3+6\sqrt{3}}{11} from both sides of the equation.
x=\frac{5\sqrt{3}-3}{11},y=\frac{6\sqrt{3}+3}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}