Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+4y=36
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x-4y=240
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x+4y=36,3x-4y=240
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+4y=36
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-4y+36
Subtract 4y from both sides of the equation.
x=\frac{1}{3}\left(-4y+36\right)
Divide both sides by 3.
x=-\frac{4}{3}y+12
Multiply \frac{1}{3} times -4y+36.
3\left(-\frac{4}{3}y+12\right)-4y=240
Substitute -\frac{4y}{3}+12 for x in the other equation, 3x-4y=240.
-4y+36-4y=240
Multiply 3 times -\frac{4y}{3}+12.
-8y+36=240
Add -4y to -4y.
-8y=204
Subtract 36 from both sides of the equation.
y=-\frac{51}{2}
Divide both sides by -8.
x=-\frac{4}{3}\left(-\frac{51}{2}\right)+12
Substitute -\frac{51}{2} for y in x=-\frac{4}{3}y+12. Because the resulting equation contains only one variable, you can solve for x directly.
x=34+12
Multiply -\frac{4}{3} times -\frac{51}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=46
Add 12 to 34.
x=46,y=-\frac{51}{2}
The system is now solved.
3x+4y=36
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x-4y=240
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x+4y=36,3x-4y=240
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&4\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}36\\240\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&4\\3&-4\end{matrix}\right))\left(\begin{matrix}3&4\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\3&-4\end{matrix}\right))\left(\begin{matrix}36\\240\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&4\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\3&-4\end{matrix}\right))\left(\begin{matrix}36\\240\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\3&-4\end{matrix}\right))\left(\begin{matrix}36\\240\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(-4\right)-4\times 3}&-\frac{4}{3\left(-4\right)-4\times 3}\\-\frac{3}{3\left(-4\right)-4\times 3}&\frac{3}{3\left(-4\right)-4\times 3}\end{matrix}\right)\left(\begin{matrix}36\\240\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}36\\240\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 36+\frac{1}{6}\times 240\\\frac{1}{8}\times 36-\frac{1}{8}\times 240\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\-\frac{51}{2}\end{matrix}\right)
Do the arithmetic.
x=46,y=-\frac{51}{2}
Extract the matrix elements x and y.
3x+4y=36
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x-4y=240
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
3x+4y=36,3x-4y=240
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x-3x+4y+4y=36-240
Subtract 3x-4y=240 from 3x+4y=36 by subtracting like terms on each side of the equal sign.
4y+4y=36-240
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
8y=36-240
Add 4y to 4y.
8y=-204
Add 36 to -240.
y=-\frac{51}{2}
Divide both sides by 8.
3x-4\left(-\frac{51}{2}\right)=240
Substitute -\frac{51}{2} for y in 3x-4y=240. Because the resulting equation contains only one variable, you can solve for x directly.
3x+102=240
Multiply -4 times -\frac{51}{2}.
3x=138
Subtract 102 from both sides of the equation.
x=46
Divide both sides by 3.
x=46,y=-\frac{51}{2}
The system is now solved.