Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

10x+15y-6z=270 x-2y+z=1 x+y=3z-3
Multiply each equation by the least common multiple of denominators in it. Simplify.
x-2y+z=1 10x+15y-6z=270 x+y=3z-3
Reorder the equations.
x=2y-z+1
Solve x-2y+z=1 for x.
10\left(2y-z+1\right)+15y-6z=270 2y-z+1+y=3z-3
Substitute 2y-z+1 for x in the second and third equation.
y=\frac{52}{7}+\frac{16}{35}z z=\frac{3}{4}y+1
Solve these equations for y and z respectively.
z=\frac{3}{4}\left(\frac{52}{7}+\frac{16}{35}z\right)+1
Substitute \frac{52}{7}+\frac{16}{35}z for y in the equation z=\frac{3}{4}y+1.
z=10
Solve z=\frac{3}{4}\left(\frac{52}{7}+\frac{16}{35}z\right)+1 for z.
y=\frac{52}{7}+\frac{16}{35}\times 10
Substitute 10 for z in the equation y=\frac{52}{7}+\frac{16}{35}z.
y=12
Calculate y from y=\frac{52}{7}+\frac{16}{35}\times 10.
x=2\times 12-10+1
Substitute 12 for y and 10 for z in the equation x=2y-z+1.
x=15
Calculate x from x=2\times 12-10+1.
x=15 y=12 z=10
The system is now solved.