\left\{ \begin{array} { l } { \frac { x } { 3 } + \frac { y } { 2 } - \frac { z } { 5 } = 9 } \\ { x - 2 y + z = 1 } \\ { \frac { x + y } { 3 } = z - 1 } \end{array} \right.
Solve for x, y, z
x=15
y=12
z=10
Share
Copied to clipboard
10x+15y-6z=270 x-2y+z=1 x+y=3z-3
Multiply each equation by the least common multiple of denominators in it. Simplify.
x-2y+z=1 10x+15y-6z=270 x+y=3z-3
Reorder the equations.
x=2y-z+1
Solve x-2y+z=1 for x.
10\left(2y-z+1\right)+15y-6z=270 2y-z+1+y=3z-3
Substitute 2y-z+1 for x in the second and third equation.
y=\frac{52}{7}+\frac{16}{35}z z=\frac{3}{4}y+1
Solve these equations for y and z respectively.
z=\frac{3}{4}\left(\frac{52}{7}+\frac{16}{35}z\right)+1
Substitute \frac{52}{7}+\frac{16}{35}z for y in the equation z=\frac{3}{4}y+1.
z=10
Solve z=\frac{3}{4}\left(\frac{52}{7}+\frac{16}{35}z\right)+1 for z.
y=\frac{52}{7}+\frac{16}{35}\times 10
Substitute 10 for z in the equation y=\frac{52}{7}+\frac{16}{35}z.
y=12
Calculate y from y=\frac{52}{7}+\frac{16}{35}\times 10.
x=2\times 12-10+1
Substitute 12 for y and 10 for z in the equation x=2y-z+1.
x=15
Calculate x from x=2\times 12-10+1.
x=15 y=12 z=10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}