\left\{ \begin{array} { l } { \frac { x } { 3 } + \frac { y } { 2 } = 6 } \\ { 2 ( 3 x - 4 ) - 3 ( y - 1 ) = 43 } \end{array} \right.
Solve for x, y
x = \frac{21}{2} = 10\frac{1}{2} = 10.5
y=5
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{2}y=6,2\left(3x-4\right)-3\left(y-1\right)=43
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{3}x+\frac{1}{2}y=6
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{3}x=-\frac{1}{2}y+6
Subtract \frac{y}{2} from both sides of the equation.
x=3\left(-\frac{1}{2}y+6\right)
Multiply both sides by 3.
x=-\frac{3}{2}y+18
Multiply 3 times -\frac{y}{2}+6.
2\left(3\left(-\frac{3}{2}y+18\right)-4\right)-3\left(y-1\right)=43
Substitute -\frac{3y}{2}+18 for x in the other equation, 2\left(3x-4\right)-3\left(y-1\right)=43.
2\left(-\frac{9}{2}y+54-4\right)-3\left(y-1\right)=43
Multiply 3 times -\frac{3y}{2}+18.
2\left(-\frac{9}{2}y+50\right)-3\left(y-1\right)=43
Add 54 to -4.
-9y+100-3\left(y-1\right)=43
Multiply 2 times -\frac{9y}{2}+50.
-9y+100-3y+3=43
Multiply -3 times y-1.
-12y+100+3=43
Add -9y to -3y.
-12y+103=43
Add 100 to 3.
-12y=-60
Subtract 103 from both sides of the equation.
y=5
Divide both sides by -12.
x=-\frac{3}{2}\times 5+18
Substitute 5 for y in x=-\frac{3}{2}y+18. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{15}{2}+18
Multiply -\frac{3}{2} times 5.
x=\frac{21}{2}
Add 18 to -\frac{15}{2}.
x=\frac{21}{2},y=5
The system is now solved.
\frac{1}{3}x+\frac{1}{2}y=6,2\left(3x-4\right)-3\left(y-1\right)=43
Put the equations in standard form and then use matrices to solve the system of equations.
2\left(3x-4\right)-3\left(y-1\right)=43
Simplify the second equation to put it in standard form.
6x-8-3\left(y-1\right)=43
Multiply 2 times 3x-4.
6x-8-3y+3=43
Multiply -3 times y-1.
6x-3y-5=43
Add -8 to 3.
6x-3y=48
Add 5 to both sides of the equation.
\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\48\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right))\left(\begin{matrix}6\\48\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right))\left(\begin{matrix}6\\48\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right))\left(\begin{matrix}6\\48\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{\frac{1}{3}\left(-3\right)-\frac{1}{2}\times 6}&-\frac{\frac{1}{2}}{\frac{1}{3}\left(-3\right)-\frac{1}{2}\times 6}\\-\frac{6}{\frac{1}{3}\left(-3\right)-\frac{1}{2}\times 6}&\frac{\frac{1}{3}}{\frac{1}{3}\left(-3\right)-\frac{1}{2}\times 6}\end{matrix}\right)\left(\begin{matrix}6\\48\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{8}\\\frac{3}{2}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}6\\48\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 6+\frac{1}{8}\times 48\\\frac{3}{2}\times 6-\frac{1}{12}\times 48\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{21}{2}\\5\end{matrix}\right)
Do the arithmetic.
x=\frac{21}{2},y=5
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}