Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}x+\frac{1}{2}y=6,2\left(3x-4\right)-3\left(y-1\right)=43
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{3}x+\frac{1}{2}y=6
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{3}x=-\frac{1}{2}y+6
Subtract \frac{y}{2} from both sides of the equation.
x=3\left(-\frac{1}{2}y+6\right)
Multiply both sides by 3.
x=-\frac{3}{2}y+18
Multiply 3 times -\frac{y}{2}+6.
2\left(3\left(-\frac{3}{2}y+18\right)-4\right)-3\left(y-1\right)=43
Substitute -\frac{3y}{2}+18 for x in the other equation, 2\left(3x-4\right)-3\left(y-1\right)=43.
2\left(-\frac{9}{2}y+54-4\right)-3\left(y-1\right)=43
Multiply 3 times -\frac{3y}{2}+18.
2\left(-\frac{9}{2}y+50\right)-3\left(y-1\right)=43
Add 54 to -4.
-9y+100-3\left(y-1\right)=43
Multiply 2 times -\frac{9y}{2}+50.
-9y+100-3y+3=43
Multiply -3 times y-1.
-12y+100+3=43
Add -9y to -3y.
-12y+103=43
Add 100 to 3.
-12y=-60
Subtract 103 from both sides of the equation.
y=5
Divide both sides by -12.
x=-\frac{3}{2}\times 5+18
Substitute 5 for y in x=-\frac{3}{2}y+18. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{15}{2}+18
Multiply -\frac{3}{2} times 5.
x=\frac{21}{2}
Add 18 to -\frac{15}{2}.
x=\frac{21}{2},y=5
The system is now solved.
\frac{1}{3}x+\frac{1}{2}y=6,2\left(3x-4\right)-3\left(y-1\right)=43
Put the equations in standard form and then use matrices to solve the system of equations.
2\left(3x-4\right)-3\left(y-1\right)=43
Simplify the second equation to put it in standard form.
6x-8-3\left(y-1\right)=43
Multiply 2 times 3x-4.
6x-8-3y+3=43
Multiply -3 times y-1.
6x-3y-5=43
Add -8 to 3.
6x-3y=48
Add 5 to both sides of the equation.
\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\48\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right))\left(\begin{matrix}6\\48\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right))\left(\begin{matrix}6\\48\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\6&-3\end{matrix}\right))\left(\begin{matrix}6\\48\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{\frac{1}{3}\left(-3\right)-\frac{1}{2}\times 6}&-\frac{\frac{1}{2}}{\frac{1}{3}\left(-3\right)-\frac{1}{2}\times 6}\\-\frac{6}{\frac{1}{3}\left(-3\right)-\frac{1}{2}\times 6}&\frac{\frac{1}{3}}{\frac{1}{3}\left(-3\right)-\frac{1}{2}\times 6}\end{matrix}\right)\left(\begin{matrix}6\\48\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{8}\\\frac{3}{2}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}6\\48\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 6+\frac{1}{8}\times 48\\\frac{3}{2}\times 6-\frac{1}{12}\times 48\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{21}{2}\\5\end{matrix}\right)
Do the arithmetic.
x=\frac{21}{2},y=5
Extract the matrix elements x and y.