\left\{ \begin{array} { l } { \frac { x } { 2 } - \frac { y + 2 } { 2 } = \frac { 3 } { 6 } } \\ { \frac { 2 ( x - 1 ) } { 3 } - \frac { 7 + 2 } { 6 } = - 1 } \end{array} \right.
Solve for x, y
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
y = -\frac{5}{4} = -1\frac{1}{4} = -1.25
Graph
Share
Copied to clipboard
2\times 2\left(x-1\right)-\left(7+2\right)=-6
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 3,6.
4\left(x-1\right)-\left(7+2\right)=-6
Multiply 2 and 2 to get 4.
4x-4-\left(7+2\right)=-6
Use the distributive property to multiply 4 by x-1.
4x-4-9=-6
Add 7 and 2 to get 9.
4x-13=-6
Subtract 9 from -4 to get -13.
4x=-6+13
Add 13 to both sides.
4x=7
Add -6 and 13 to get 7.
x=\frac{7}{4}
Divide both sides by 4.
\frac{\frac{7}{4}}{2}-\frac{y+2}{2}=\frac{3}{6}
Consider the first equation. Insert the known values of variables into the equation.
3\times \frac{7}{4}-3\left(y+2\right)=3
Multiply both sides of the equation by 6, the least common multiple of 2,6.
\frac{21}{4}-3\left(y+2\right)=3
Multiply 3 and \frac{7}{4} to get \frac{21}{4}.
\frac{21}{4}-3y-6=3
Use the distributive property to multiply -3 by y+2.
-\frac{3}{4}-3y=3
Subtract 6 from \frac{21}{4} to get -\frac{3}{4}.
-3y=3+\frac{3}{4}
Add \frac{3}{4} to both sides.
-3y=\frac{15}{4}
Add 3 and \frac{3}{4} to get \frac{15}{4}.
y=\frac{\frac{15}{4}}{-3}
Divide both sides by -3.
y=\frac{15}{4\left(-3\right)}
Express \frac{\frac{15}{4}}{-3} as a single fraction.
y=\frac{15}{-12}
Multiply 4 and -3 to get -12.
y=-\frac{5}{4}
Reduce the fraction \frac{15}{-12} to lowest terms by extracting and canceling out 3.
x=\frac{7}{4} y=-\frac{5}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}