\left\{ \begin{array} { l } { \frac { x } { 2 } = \frac { x } { 3 } } \\ { x + \frac { 1 } { 4 } = y + \frac { 1 } { 7 } } \end{array} \right.
Solve for x, y
x=0
y=\frac{3}{28}\approx 0.107142857
Graph
Share
Copied to clipboard
3x=2x
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
3x-2x=0
Subtract 2x from both sides.
x=0
Combine 3x and -2x to get x.
0+\frac{1}{4}=y+\frac{1}{7}
Consider the second equation. Insert the known values of variables into the equation.
\frac{1}{4}=y+\frac{1}{7}
Add 0 and \frac{1}{4} to get \frac{1}{4}.
y+\frac{1}{7}=\frac{1}{4}
Swap sides so that all variable terms are on the left hand side.
y=\frac{1}{4}-\frac{1}{7}
Subtract \frac{1}{7} from both sides.
y=\frac{3}{28}
Subtract \frac{1}{7} from \frac{1}{4} to get \frac{3}{28}.
x=0 y=\frac{3}{28}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}