\left\{ \begin{array} { l } { \frac { x } { 2 } + y = 150 } \\ { 2 x + y = 345 } \end{array} \right.
Solve for x, y
x=130
y=85
Graph
Share
Copied to clipboard
\frac{1}{2}x+y=150,2x+y=345
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{2}x+y=150
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{2}x=-y+150
Subtract y from both sides of the equation.
x=2\left(-y+150\right)
Multiply both sides by 2.
x=-2y+300
Multiply 2 times -y+150.
2\left(-2y+300\right)+y=345
Substitute -2y+300 for x in the other equation, 2x+y=345.
-4y+600+y=345
Multiply 2 times -2y+300.
-3y+600=345
Add -4y to y.
-3y=-255
Subtract 600 from both sides of the equation.
y=85
Divide both sides by -3.
x=-2\times 85+300
Substitute 85 for y in x=-2y+300. Because the resulting equation contains only one variable, you can solve for x directly.
x=-170+300
Multiply -2 times 85.
x=130
Add 300 to -170.
x=130,y=85
The system is now solved.
\frac{1}{2}x+y=150,2x+y=345
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{1}{2}&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}150\\345\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{2}&1\\2&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\2&1\end{matrix}\right))\left(\begin{matrix}150\\345\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{2}&1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\2&1\end{matrix}\right))\left(\begin{matrix}150\\345\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\2&1\end{matrix}\right))\left(\begin{matrix}150\\345\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{1}{2}-2}&-\frac{1}{\frac{1}{2}-2}\\-\frac{2}{\frac{1}{2}-2}&\frac{\frac{1}{2}}{\frac{1}{2}-2}\end{matrix}\right)\left(\begin{matrix}150\\345\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{2}{3}\\\frac{4}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}150\\345\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 150+\frac{2}{3}\times 345\\\frac{4}{3}\times 150-\frac{1}{3}\times 345\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}130\\85\end{matrix}\right)
Do the arithmetic.
x=130,y=85
Extract the matrix elements x and y.
\frac{1}{2}x+y=150,2x+y=345
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{2}x-2x+y-y=150-345
Subtract 2x+y=345 from \frac{1}{2}x+y=150 by subtracting like terms on each side of the equal sign.
\frac{1}{2}x-2x=150-345
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
-\frac{3}{2}x=150-345
Add \frac{x}{2} to -2x.
-\frac{3}{2}x=-195
Add 150 to -345.
x=130
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
2\times 130+y=345
Substitute 130 for x in 2x+y=345. Because the resulting equation contains only one variable, you can solve for y directly.
260+y=345
Multiply 2 times 130.
y=85
Subtract 260 from both sides of the equation.
x=130,y=85
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}